D=m/v ⇒ m=d*v
d=density
m=mass
v=volume
d(ether)=0.71 gr/cm³=0.71 gr/ ml
v=130 ml
m=d*v
m=0.71 gr/ml*(130 ml)=92.3 g
Solution: m=92.3 g
Answer:
V2 = 894.4mL
Explanation:
P1= 124.1, V1= 578mL, P2 = 80.2kPa, V2= ?
Applying Boyle's law
P1V1 = P2V2
Substitute and simplify
124.1*578=80.2*V2
V2= 894.4mL
<span>Celsius scale: 100 degrees.
Fahrenheit scale: 180 degrees.</span>
Answer:
The specific heat of zinc is 0.361 J/g°C
Explanation:
<u>Step 1:</u> Data given
44.0 J needed
Mass of solid zinc = 10.6 grams
Initial temperature = 24.9 °C
Final temperature = 36.4 °C
<u>Step 2</u>: Calculate the specific heat of zinc
Q = m*c*ΔT
⇒ with Q = heat (in Joule) = 44.0 J
⇒ with m = the mass of the solid zinc = 10.6 grams
⇒ with c = the specific heat of the zinc = TO BE DETERMINED
⇒ with ΔT = The change in temperature = T2-T1 = 36.4 °C - 24.9 °C = 11.5 °C
44.0 J = 10.6 grams * c * 11.5°C
c = 44.0 J / (10.6g * 11.5 °C)
c = 0.361 J/g°C
The specific heat of zinc is 0.361 J/g°C
Answer:
pH = 8.1
Explanation:
Assuming that we are at 25 degrees Celsius, pH + pOH = 14.
We can then plug in the given pOH and solve for pH:
pH + pOH = 14
pH + 5.9 = 14
pH = 14 - 5.9 = 8.1