Answer:
104.969 amu.
Explanation:
From the question given above, the following data were obtained:
Isotope A:
Mass of A = 107.977 amu
Abundance (A%) = 0.1620%
Isotope B:
Mass of B = 106.976 amu
Abundance (B%) = 1.568%
Isotope C:
Mass of C = 105.974 amu
Abundance (C%) = 47.14%
Isotope D:
Mass of D = 103.973 amu
Abundance (D%) = 51.13%
Average atomic mass =?
The average atomic mass of the element can be obtained as follow:
Average atomic mass = [(Mass of A × A%) /100] + [(Mass of B × B%) /100] + [(Mass of C × C%) /100] + [(Mass of D × D%) /100]
Average atomic mass = [(107.977 × 0.1620)/100] + [(106.976 × 1.568)/100] + [(105.974 × 47.14)/100] + [(103.973 × 51.13)/100]
= 0.175 + 1.677 + 49.956 + 53.161
= 104.969 amu
Therefore, the average atomic mass of the element is 104.969 amu.
Oxygen:
Atomic no. = 8(from periodic table)
⇒1s^2 2s^2 2p^4
But it is O^2-
There are 2 more electrons
=>1s^2 2s^2 2p^6
Voila!
C. 6 Valence electrons. Remember that the family that they are in will determine the number of valence electrons that element will have. Sulfur is in family 16 so it will have 6 Valence electrons.
Answer:
Because heat causes alcohol to volatilize, instead of burning it.
The combustion is not fulfilled since this is detached from the surface of the banknote that would be the necessary product to burn, in addition to considering that the necessary temperature is not reached
Explanation:
When water and alcohol are joined, they form a solution with high evaporation power, plus alcohol that has a higher degree of volatility than water, this is how these liquids are not retained on the surface of the banknote with heat and they are not it burns.
Answer:
<h3>
<u>A). react with acid that is added and make a base.</u></h3>
explanation:
<em>Buffer solutions resist a change in pH when small amounts of a strong acid or a strong base are added.</em>