In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument.
Answer: X= -7
Step-by-step explanation: A negative time a negative is a positive so -12x-7 is equal to 84. 84 plus 16 is equal too 100.
P = 2(L + W)
L = W + 5
A = 4P + 2
P = 2(W + 5 + W)
P = 2(2W + 5)
P = 4W + 10
A = 4P + 2
A = 4(4W + 10) + 2
A = 16W + 42
A = L * W
A = W(W + 5)
A = W^2 + 5W
W^2 + 5W = 16W + 42
W^2 + 5W - 16W - 42 = 0
W^2 - 11W - 42 = 0
(W + 3)(W - 14) = 0
W - 14 = 0
W = 14 <==
L = W + 5
L = 14 + 5
L = 19 <==
P = 2(19 + 14)
P = 2(33)
P = 66
A = L * W
A = 19 * 14
A = 266
answer : length = 19, width = 14....perimeter = 66....area = 266
Step-by-step explanation:
- (√3+√7)(√3+√7)
- (√3)^2+[(√3*√7)+(√3*√7)]+(√7)^2
- 3+2√21+7
- 10+2√21
9514 1404 393
Answer:
a) w(4w-15)
b) w²
c) w(4w -15) = w²
d) w = 5
e) 5 by 5
Step-by-step explanation:
a) If w is the width, and the length is 15 less than 4 times the width, then the length is 4w-15. The area is the product of length and width.
A = w(4w -15)
__
b) If w is the side length, the area of the square is (also) the product of length and width:
A = w²
__
c) Equating the expressions for area, we have ...
w(4w -15) = w²
__
d) we can subtract the right side to get ...
4w² -15w -w² = 0
3w(w -5) = 0
This has solutions w=0 and w=5. Only the positive solution is sensible in this problem.
The side length of the square is 5 units.
__
e) The rectangle is 5 units wide, and 4(5)-15 = 5 units long.
The rectangle and square have the same width and the same area, so the rectangle must be a square.