Answer:
Volume occupied by 55.5 moles of water gas at STP = 1240 Liters.
Explanation:
1st keep in mind that 'volume' in the context of problems like this apply only to the gas phase form of the substance. Water in solid form (ice) or liquid form (liquid water) do not apply. Volume in this case is referred to as 'molar volume' and is a gas occupying 22.4 liters at STP conditions (0°C, 1Atm).
So, if 1 molar volume of water gas (steam) occupies 22.4 Liters at STP, then 55.5 moles of water gas occupies 22.4 Liters/mole x 55.5 moles = 1243.2 Liters, or 1240 Liters (3 sig. figs.). :-)
The subscript is the amount of atoms in each molecule and the coefficient is the amount of molecules. there are 4 Hydrogen, 2 Sulfur, and 8 Oxygen in this particular substance.
<span>The law of conservation of mass states that, "Mass can neither be created nor destroyed, only its form changes with respect to different forms of energy."
In any reaction, say 10 gms of water is decomposed into its constituents Hydrogen and Oxygen. But the mass remains conserved for the reaction. Although mass and energy are inter-convertible. But,the net mass/energy remains conserved i.e. the mass of products will be equal to the mass of reactants. </span>
D, forms from decomposed material
482VP I think is the correct answer.