Answer:
ρ = 1.08 g/cm³
Explanation:
Step 1: Given data
Mass of the substance (m): 21.112 g
Volume of the substance (V): 19.5 cm³
Step 2: Calculate the density of the substance
The density (ρ) of a substance is equal to its mass divided by its volume.
ρ = m / V
ρ = 21.112 g / 19.5 cm³
ρ = 1.08 g/cm³
The density of the substance is 1.08 g/cm³.
Answer: Food production industry
Explanation:
Cooling is a process used mainly to reduce the temperature of food to either enter a different process or for storage purposes.
The temperature reached by the cooling process is usually between -1 and 8 degrees celcius.
<h3>
Answer:</h3>
812 kPa
<h3>
Explanation:</h3>
- According to Boyle's law pressure and volume of a fixed mass are inversely proportional at constant absolute temperature.
- Mathematically,

At varying pressure and volume;
P1V1=P2V2
In this case;
Initial volume, V1 = 2.0 L
Initial pressure, P1 = 101.5 kPa
Final volume, V1 = 0.25 L
We are required to determine the new pressure;

Replacing the known variables with the values;

= 812 kPa
Thus, the pressure of air inside the balloon after squeezing is 812 kPa
Answer:
b. 0,99atm
c. Answer is in the explanation
d. Answer is in the explanation
Explanation:
b. Using Gay-Lussac's law:
P₁T₂ = P₂T₁
P₁: 0,70 atm; T₂: 425K; P₂: ??; T₁: 299K
0,70atm×425K / 299K = <em>0,99 atm</em>
c. Using kinetic molecular theory, the increasing of temperature increases the kinetic energy of gas particles and if kinetic energy increases, the pressure increases. That means the increasing of temperature increases the pressure in the system.
d. Now, the increases in kinetic energy of gases increase the collisions betwen particles. As these intermolecular forces that are not taken into account in ideal gas law, the observed pressure will be different to the pressure predicted by ideal gas law.
I hope it helps!
The correct answer would be D: Physical properties can be observed without changing the identity of a substance