Thus L.H.S = R.H.S that is 2/√3cosx + sinx = sec(Π/6-x) is proved
We have to prove that
2/√3cosx + sinx = sec(Π/6-x)
To prove this we will solve the right-hand side of the equation which is
R.H.S = sec(Π/6-x)
= 1/cos(Π/6-x)
[As secƟ = 1/cosƟ)
= 1/[cos Π/6cosx + sin Π/6sinx]
[As cos (X-Y) = cosXcosY + sinXsinY , which is a trigonometry identity where X = Π/6 and Y = x]
= 1/[√3/2cosx + 1/2sinx]
= 1/(√3cosx + sinx]/2
= 2/√3cosx + sinx
R.H.S = L.H.S
Hence 2/√3cosx + sinx = sec(Π/6-x) is proved
Learn more about trigonometry here : brainly.com/question/7331447
#SPJ9
Answer:
-1152
Step-by-step explanation:
abc² the expression can be rewritten using the given values for each letter
(-3)*6*(-8)^2 now we find the second power of (-8) by multiplying it with itself
(-8)*(-8) = 64
(-3)*6*64 = -1152
89,000 is it for ur question
The answer is going 5 - 2x = 3