From ideal gas equation that is PV=nRT
n(number of moles)=PV/RT
P=760 torr
V=4.50L
R(gas constant =62.363667torr/l/mol
T=273 +273=298k
n is therefore (760torr x4.50L) /62.36367 torr/L/mol x298k =0.184moles
the molar mass of NO2 is 46 therefore density= 0.184 x 46=8.464g/l
We get the pressure of the hydrogen gas from the difference between the measured pressure and the vapor pressure of water:
total pressure = Pressure of H2 + Vapor Pressure of H2O
1.00 atm = Pressure of H2 + 0.0313 atm
Pressure of H2 = 1.00 atm - 0.0313 atm = 0.9687 atm
From the ideal gas law,
PV = nRT
we can calculate for the number of moles of H2 as
n = PV/RT = (0.9687 atm)(0.246L) / (0.08206 L·atm/mol·K)(298.15 K)
= 0.00974 mol H2
where
V = 246 mL (1 L / 1000 mL) = 0.246 L
T = 25 degrees Celsius + 273.15 = 298.15 K
We use the mole ratio of Na and H2 from the reaction of sodium metal with water as shown in the equation
2Na(s) + 2H2O(l) → 2 NaOH(aq) + H2(g)
and the molar mass of sodium Na to get the mass of sodium used in the reaction:
mass of Na = 0.00974 mol H2 (2 mol Na /1 mol H2)(22.99 g Na/1 mol Na)
= 0.448 grams of sodium
Answer:

Explanation:
Hello there!
In this case, according to the given information, it possible for us to realize that this problem is solved via the ideal gas equation:

By which we solve for n (moles) as shown below:

Then, we plug in the given pressure, volume and temperature (in K) to obtain:

Regards!
One meter in front of the source at this location will a sensor detect the highest concentration of mercaptan.
Mixture: matter than is composed of two or more substances that can be separated by physical means (ex; let's say you have a jar of red and blue marbles. this is a mixture. You can separate the colors with your hands (physical means.))
Compound: a substance in which two or more atoms are chemically combined in a fixed proportion (ex: water is a compound that consists of the element hydrogen and the element oxygen).