A loss in 2 points per forget, times 6 times forgetting gives 12. But since it is a deduction in points the final integer answer is -12
Answer:
depends on what it is. like is it a dice or something you're pulling out of a bag.
Answer:
k=4
Step-by-step explanation:
First, we can subtract 3k on both sides. It is ultimately easier to start by subtracting the term with a variable. This would result in 45=5k+25. Then, we can subtract 25 on both sides to get closer to isolating k. This becomes 20=5k. We can then divide by 5 on both sides. This means that k=4.
Answer:
C. 15.6
Step-by-step explanation:
Perimeter of WXYZ = WX + XY + YZ + ZW
Use the distance formula,
to calculate the length of each segment.
✔️Distance between W(-1, 1) and X(1, 2):
Let,
![W(-1, 1) = (x_1, y_1)](https://tex.z-dn.net/?f=%20W%28-1%2C%201%29%20%3D%20%28x_1%2C%20y_1%29%20)
![X(1, 2) = (x_2, y_2)](https://tex.z-dn.net/?f=%20X%281%2C%202%29%20%3D%20%28x_2%2C%20y_2%29%20)
Plug in the values
![WX = \sqrt{(1 - (-1))^2 + (2 - 1)^2}](https://tex.z-dn.net/?f=%20WX%20%3D%20%5Csqrt%7B%281%20-%20%28-1%29%29%5E2%20%2B%20%282%20-%201%29%5E2%7D%20)
![WX = \sqrt{(2)^2 + (1)^2}](https://tex.z-dn.net/?f=%20WX%20%3D%20%5Csqrt%7B%282%29%5E2%20%2B%20%281%29%5E2%7D%20)
![WX = \sqrt{4 + 1}](https://tex.z-dn.net/?f=%20WX%20%3D%20%5Csqrt%7B4%20%2B%201%7D%20)
![WX = \sqrt{5}](https://tex.z-dn.net/?f=%20WX%20%3D%20%5Csqrt%7B5%7D%20)
![WX = 2.24](https://tex.z-dn.net/?f=%20WX%20%3D%202.24%20)
✔️Distance between X(1, 2) and Y(2, -4)
Let,
![X(1, 2) = (x_1, y_1)](https://tex.z-dn.net/?f=%20X%281%2C%202%29%20%3D%20%28x_1%2C%20y_1%29%20)
![Y(2, -4) = (x_2, y_2)](https://tex.z-dn.net/?f=%20Y%282%2C%20-4%29%20%3D%20%28x_2%2C%20y_2%29%20)
Plug in the values
![XY = \sqrt{(2 - 1)^2 + (-4 - 2)^2}](https://tex.z-dn.net/?f=%20XY%20%3D%20%5Csqrt%7B%282%20-%201%29%5E2%20%2B%20%28-4%20-%202%29%5E2%7D%20)
![XY = \sqrt{(1)^2 + (-6)^2}](https://tex.z-dn.net/?f=%20XY%20%3D%20%5Csqrt%7B%281%29%5E2%20%2B%20%28-6%29%5E2%7D%20)
![XY = \sqrt{1 + 36}](https://tex.z-dn.net/?f=%20XY%20%3D%20%5Csqrt%7B1%20%2B%2036%7D%20)
![XY = \sqrt{37}](https://tex.z-dn.net/?f=%20XY%20%3D%20%5Csqrt%7B37%7D%20)
![XY = 6.08](https://tex.z-dn.net/?f=%20XY%20%3D%206.08%20)
✔️Distance between Y(2, -4) and Z(-2, -1)
Let,
![Y(2, -4) = (x_1, y_1)](https://tex.z-dn.net/?f=%20Y%282%2C%20-4%29%20%3D%20%28x_1%2C%20y_1%29%20)
![Z(-2, -1) = (x_2, y_2)](https://tex.z-dn.net/?f=%20Z%28-2%2C%20-1%29%20%3D%20%28x_2%2C%20y_2%29%20)
Plug in the values
![YZ = \sqrt{(-2 - 2)^2 + (-1 -(-4))^2}](https://tex.z-dn.net/?f=%20YZ%20%3D%20%5Csqrt%7B%28-2%20-%202%29%5E2%20%2B%20%28-1%20-%28-4%29%29%5E2%7D%20)
![YZ = \sqrt{(-4)^2 + (3)^2}](https://tex.z-dn.net/?f=%20YZ%20%3D%20%5Csqrt%7B%28-4%29%5E2%20%2B%20%283%29%5E2%7D%20)
![YZ = \sqrt{16 + 9}](https://tex.z-dn.net/?f=%20YZ%20%3D%20%5Csqrt%7B16%20%2B%209%7D%20)
![YZ = \sqrt{25}](https://tex.z-dn.net/?f=%20YZ%20%3D%20%5Csqrt%7B25%7D%20)
![YZ = 5](https://tex.z-dn.net/?f=%20YZ%20%3D%205%20)
✔️Distance between Z(-2, -1) and W(-1, 1)
Let,
![Z(-2, -1) = (x_1, y_1)](https://tex.z-dn.net/?f=%20Z%28-2%2C%20-1%29%20%3D%20%28x_1%2C%20y_1%29%20)
![W(-1, 1) = (x_2, y_2)](https://tex.z-dn.net/?f=%20W%28-1%2C%201%29%20%3D%20%28x_2%2C%20y_2%29%20)
Plug in the values
![ZW = \sqrt{(-1 -(-2))^2 + (1 - (-1))^2}](https://tex.z-dn.net/?f=%20ZW%20%3D%20%5Csqrt%7B%28-1%20-%28-2%29%29%5E2%20%2B%20%281%20-%20%28-1%29%29%5E2%7D%20)
![ZW = \sqrt{(1)^2 + (2)^2}](https://tex.z-dn.net/?f=%20ZW%20%3D%20%5Csqrt%7B%281%29%5E2%20%2B%20%282%29%5E2%7D%20)
![ZW = \sqrt{1 + 4}](https://tex.z-dn.net/?f=%20ZW%20%3D%20%5Csqrt%7B1%20%2B%204%7D%20)
![ZW = \sqrt{5}](https://tex.z-dn.net/?f=%20ZW%20%3D%20%5Csqrt%7B5%7D%20)
![ZW = 2.24](https://tex.z-dn.net/?f=%20ZW%20%3D%202.24%20)
✅Perimeter = 2.24 + 6.08 + 5 + 2.24 = 15.56
≈ 15.6