Answer:
Buffer 1.
Explanation:
Ammonia is a weak base. It acts like a Bronsted-Lowry Base when it reacts with hydrogen ions.
.
gains one hydrogen ion to produce the ammonium ion
. In other words,
is the conjugate acid of the weak base
.
Both buffer 1 and 2 include
- the weak base ammonia
, and - the conjugate acid of the weak base
.
The ammonia
in the solution will react with hydrogen ions as they are added to the solution:
.
There are more
in the buffer 1 than in buffer 2. It will take more strong acid to react with the majority of
in the solution. Conversely, the pH of buffer 1 will be more steady than that in buffer 2 when the same amount of acid has been added.
1 molecule of NaCl contains 1 sodium ion (Na+), that's why if we have 3.0 moles of.
NaCl, we have 3.0 moles of Na+.
N(ions) = n(mol) · NA.
N(ions) = 3.0 moles · 6.02·1023 = 18.06 ·1023 ions.
If you have to write the chemical formula of a simple, binary ionic compound given the name of the compound, you follow a set of three steps. Let's go through them using magnesium chloride as an example. Write the symbols for the cation and the anion: Mg and Cl. Determine the charge on the cation and anion.
Answer:
Box is made up of <em>copper</em>, because density is <em>8.96 g/cm³.</em>
Explanation:
Given data:
Volume of box = 17.63 cm³
Mass of box = 158 g
Which metal box is this = ?
Solution:
First we will calculate the density of box then we will compare it with the density value of given metals.
d = m/v
d = 158 g/ 17.63 cm³
d = 8.96 g/cm³
The calculated density is similar to the given density value of copper thus box is made up of copper.