Answer:
see notes below
Explanation:
The mole is the mass of substance containing 1 Avogadro's Number of particles. That is, 1 mole substance = 1 formula weight. For elements, 1 mole weight is equal to the atomic weight expressed as grams. For molecules, 1 mole weight is equal to the molecular weight expressed as grams.
1 mole = 1 formula weight
<u>Moles to Grams and Grams to Moles</u>
Grams => Moles
Given grams, moles = mass given / formula weight
*Ask the question => How many formula weights are there in the given mass? => Results is always moles.
Moles => Grams
Given moles, grams = moles given X formula weight
*Summary
Grams to Moles => divide by formula weight
Moles to Grams => multiply by formula weight
Answer: Volume of gas in the stomach, V = 0.0318L or 31.8mL
Explanation:
The number of moles of oxygen will remain constant even though the liquid oxygen will undergo a change of state to gaseous inside the person's stomach due to an increase in temperature.
<em>Number of moles of oxygen gas = mass/molar mass</em>
molar mass of oxygen gas = 32 g/mol
mass of oxygen gas = density * volume
mass of oxygen gas = 1.149 g/ml * 0.035 ml
mass of oxygen gas = 0.040215 g
Number of moles of oxygen gas = 0.0402 g/(32 g/mol)
Number of moles of oxygen gas = 0.00125 moles
<em>Using the ideal gas equation, PV=nRT</em>
where P = 1.0 atm, V = ?, n = 0.00125 moles, R = 0.082 L*atm/K*mol, T = (37 + 273)K = 310 K
<em>V = nRT/P</em>
V = (0.00125moles) * (0.082 L*atm/K*mol) * (310 K) / 1 atm
V = 0.0318L or 31.8mL
Answer:
146 kJ
Explanation:
There are two heat flows in this question.
Heat lost on cooling + heat lost on solidifying = 0
q₁ + q₂ = 0
mCΔT + nΔHsol = 0
Data:
m = 575 g
C = 0.449 J·K⁻¹g⁻¹
T_i = 1825 K
T_f = 1811 K
ΔHsol = -13.8 kJ·mol⁻¹
Calculations:
(a) Heat lost on cooling
ΔT = T_f - T_i = 1811 K - 1825 K = -14 K
q₁ = mCΔT = 575 g × 0.449 J·K⁻¹g⁻¹ × (-14 K) = -361 J = -3.61 kJ
(b) Heat lost on solidifying
(c) Total heat lost
q = q₁ + q₂ = -3.61 kJ - 142.1 kJ = -146 kJ
The heat lost was 146 kJ.
Answer:
germanium (Ge)
Explanation:
both belong to the same group
Answer:
1. carboxyl group is removed from pyruvate and releases 1 co2 molecule and leaves 2 carbon molecules
2. 2-carbon molecule is oxidized and electrons lost in oxidation are picked up by nad+ to form Ndah
3. oxidized 2 carbon molecule is attached to coenzyme a to form ACETYL COA
Explanation: