Answer : The value of
for this reaction is 36.18 kJ
Explanation :
First law of thermodynamic : It states that the energy can not be created or destroyed, it can only change or transfer from one state to another state.
As per first law of thermodynamic,

where,
= internal energy of the system
q = heat added or rejected by the system
w = work done
As we are given that:
q = 38.65 kJ
w = -2.47 kJ (system work done on surrounding)
Now put all the given values in the above expression, we get:


Therefore, the value of
for this reaction is 36.18 kJ
The answer <span>is <span>8.9 g/mL</span>.</span>
The density (D) is <span>equal to mass (m) divided by volume (V): D = m/V
Let's find the mass of the object:
m = 156 g - 105.5 g = 50.5 g
Let's find the volume of the volume:
V = 30.7 mL - 25 mL = 5.7 mL
The density is:
D = m/V = 50.5 g / 5.7 mL = 8.9 g/mL</span>
The correct question is as follows:
How do you convert from grams to moles of a substance
1. Divide by the molar mass
2. Subtract the molar mass
3. Add the molar mass
4. Multiple by the molar mass
Answer: In order to convert from grams to moles of a substance divide by the molar mass.
Explanation:
The number of moles of a substance is the mass of substance in grams divided by its molar mass.
The formula to calculate moles is as follows.

This means that grams are converted to moles when grams is divided by molar mass.
Thus, we can conclude that in order to convert from grams to moles of a substance divide by the molar mass.
Answer molecule
Explanation: The combination of two or more atoms, from the same or different elements, creates a molecule. Compounds are a type of molecules made of atoms from different elements held together by chemical bonds.