When the volume is 450 cm3 so the boat will displace 450 g.
so we have 450 g - 14.5g = 435.5 left
so to get how many pennies can be added to the boat before it sinks can be determined by:
divided the mass for the one penny:
no.of Penny = 435.5 / 2.5g
= 174.2
∴ the boat will float with 174 pennies and will start to sink with 175
Sediment is solid material that is moved and deposited in a new location. Sediment can consist of rocks and minerals, as well as the remains of plants and animals. It can be as small as a grain of sand or as large as a boulder. Sediment moves from one place to another through the process of erosion.
Answer: The volume of 0.640 grams of
gas at Standard Temperature and Pressure (STP) is 0.449 L.
Explanation:
Given: Mass of
gas = 0.640 g
Pressure = 1.0 atm
Temperature = 273 K
As number of moles is the mass of substance divided by its molar mass.
So, moles of
(molar mass = 32.0 g/mol) is as follows.

Now, ideal gas equation is used to calculate the volume as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

Thus, we can conclude that the volume of 0.640 grams of
gas at Standard Temperature and Pressure (STP) is 0.449 L.
Answer: 
Explanation:
Electron gain enthalpy is defined as energy released on addition of electron to an isolated gaseous atom.
The amount of energy released will be maximum when the tendency to attract electrons is maximum. As flourine has atomic number of 9 and has electronic configuration of 2,7. It can readily gain 1 electron to attain stable noble gas configuration and hence liberates maximum energy.
Hi, you've asked an incomplete question. Here's the diagram that completes the question.
Answer:
<u>(B) nonpolar covalent bonds</u>
Explanation:
This structure in the diagram rightly fits the description of a non-covalent bond because there is an equal sharing of electrons of Carbon (C) and Chlorine (Cl).
<em>Remember</em> too that these elements are in their solid-state, hence the CCl4 (carbon tetrachloride) molecules are held strongly together.