p=mv so wouldn't u multiply them?
Answer:
you will be the clouds
and I will be the sky.
you will be the ocean
and I will be the shore.
you will be the trees
and I will be the wind.
whatever we are, you and I will always collide.
There you go! Let me know if it helped.
:)
Answer:
a) It takes her 1.43 s to reach a speed of 2.00 m/s.
b) Her deceleration is - 2.50 m/s²
Explanation:
The equation of velocity for an object that moves in a straight line with constant acceleration is as follows:
v = v0 + a · t
Where:
v = velocty.
v0 = initial velocity.
a = acceleration.
t = time.
a) Using the equation of velocity, let´s consider that the car moves in the positive direction. Then:
v = v0 + a · t
2.00 m/s = 0 m/s + 1.40 m/s² · t
t = 2.00 m/s / 1.40 m/s²
t = 1.43 s
It takes her 1.43 s to reach a speed of 2.00 m/s
b) Let´s use again the equation of velocity, knowing that at t = 0.800 s the velocity is 0 m/s:
v = v0 + a · t
0 = 2.00 m/s + a · 0.800 s
-2.00 m/s / 0.800 s = a
a = -2.50 m/s²
Her deceleration is - 2.50 m/s²
the friction force provided by the brakes is 30000 N.
<h3>What is friction force?</h3>
Friction force is the force that opposes the motion between two bodies in contact.
To calculate the average friction force provided by the brakes, we apply the formula below.
Formula:
- K.E = F'd............. Equation 1
Where:
- K.E = Kinetic energy of the train
- F' = Friction force provided by the brakes
- d = distance
Make F' the subject of the equation
- F' = K.E/d............ Equation 2
From the question,
Given:
Substitute these values into equation 2
- F' = (8.1 ×10⁶)/270
- F' = 30000 N
Hence, the friction force provided by the brakes is 30000 N
Learn more about friction force here: brainly.com/question/13680415
Kinetic energy has nothing to do with anything other than motion of the particle.
When a particle with velocity v collides another particle(suppose it is at rest for simplication), assuming that there is perfectly elastic collision between them, the velocity of particle which was at rest becomes mv/M ( assuming mass of particle in motion to be m and at rest to be M) from convervation of linear momentum. And all this transfer of energy happens in a fraction of seconds which is not visible to naked eyes.
Hence 1st option is correct!