Answer:
F = 2985.125 N
Explanation:
Given that,
The radius of curvature of the roller coaster, r = 8 m
Speed of Micheal, v = 17 m/s
Mass of body, m = 65 kg We need to find the net force acting on Micheal. Net force act the bottom of the circle is given by :

So, the net force is 2985.125 N.
Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 80 ft/s
acceleration, a = 150 ft/s²
Let the time taken is t.
v = u + at
80 = 0 + 150 x t
t = 0.53 second
A) See ray diagram in attachment (-6.0 cm)
By looking at the ray diagram, we see that the image is located approximately at a distance of 6-7 cm from the lens. This can be confirmed by using the lens equation:

where
q is the distance of the image from the lens
f = -10 cm is the focal length (negative for a diverging lens)
p = 15 cm is the distance of the object from the lens
Solving for q,


B) The image is upright
As we see from the ray diagram, the image is upright. This is also confirmed by the magnification equation:

where
are the size of the image and of the object, respectively.
Since q < 0 and p > o, we have that
, which means that the image is upright.
C) The image is virtual
As we see from the ray diagram, the image is on the same side of the object with respect to the lens: so, it is virtual.
This is also confirmed by the sign of q in the lens equation: since q < 0, it means that the image is virtual
1. 0.2 g/mL
The relationship between mass, density and volume of an object is

where
d is the density
m is the mass
V is the volume
For the object in this problem, we have
m = 10 g
V = 50 mL
Substituting into the equation,

2. 10 mL
In this exercise we know:
- The density of the object: d = 2 g/mL
- The mass of the object: m = 20 g
Therefore, we can re-arrange the previous equation to find the volume:

And substituting values into the equation, we find

Answer:
The total work done by Brad each day is 176400 J
Explanation:
Hi there! The work done by a force (F) pointed in the same direction as the displacement (d) is calculated as follows:
W = F · d
The force applied is equal to the weight of Brad, that is calculated as follows:
Weight = m · g
Where:
m = mass of Brad
g = acceleration due to gravity (9.8 m/s²)
Then:
Weight = 60 kg · 9.8 m/s² = 588 N
Let´s find the vertical distance traveled by Brad each day:
He exercises 20 min per day. Each minute Brad does 60 steps. In total, Brad steps up (20 min · 60 steps/min) 1200 steps. If each step has a height of 0.25 m, the total distance traveled by Brad will be
(1200 steps · 0.25 m/step) 300 m.
Then, the total work done by Brad is
W = F · d
W = 588 N · 300 m
W = 176400 J
The total work done by Brad each day is 176400 J