Answer:

Explanation:
Generally the workdone in moving the proton is mathematically represented as

Where 
So

Here
is the velocity at A with value 50 m/s
So


Also

Here
is the velocity at A with value 
=> 
=>
So


Now this workdone is also mathematically represented as

So

Here 
So


Generally proton movement is in the direction of the electric field it means that 
So

Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
f = 8 N
Explanation:
Data provided in the question
Radius of the pulley = r = 0.05 m
Moment of inertia = (I) = 0.2 kg.m^{2}
Angular acceleration = ∝ = 2 rad/sec
Based on the above information
As we know that
Torque is


And,
Torque is also


So,
We can say that


0.05f = 0.4
f = 8 N
We simply applied the above formulas
The amount of heat required is B) 150 J
Explanation:
The amount of heat energy required to increase the temperature of a substance is given by the equation:

where:
m is the mass of the substance
C is the specific heat capacity of the substance
is the change in temperature of the substance
For the sample of copper in this problem, we have:
m = 25 g (mass)
C = 0.39 J/gºC (specific heat capacity of copper)
(change in temperature)
Substituting, we find:

So, the closest answer is B) 150 J.
Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly