1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
3 years ago
14

Penny says there are 4 ways to make 26. Is she correct? Using only 10's & 1's

Mathematics
2 answers:
Murrr4er [49]3 years ago
7 0
Yes she is!! i hope this helps you out
Vlada [557]3 years ago
3 0
Yes she is correct! hope this helps
You might be interested in
ALGEBRA QUESTION PLS HELPS
cluponka [151]

The value of x is –7.

Solution:

Given expression:

$\left(\frac{1}{x+3}+\frac{6}{x^{2}+4 x+3}\right) \cdot \frac{x+3}{x+1}

Let us factor x^2+4x+3.

x^2+4x+3=(x+1)(x+3)

Substitute this in the fraction.

$\left(\frac{1}{x+3}+\frac{6}{(x+1)(x+3)}\right) \cdot \frac{x+3}{x+1}

To make the denominator same, multiply and divide the first term by (x +1).

$\left(\frac{(x+1)}{(x+1)(x+3)}+\frac{6}{(x+1)(x+3)}\right) \cdot \frac{x+3}{x+1}

Denominators are same, you can add the fractions.

$\left(\frac{x+1+6}{(x+1)(x+3)}\right) \cdot \frac{x+3}{x+1}

$\frac{x+7}{(x+1)(x+3)} \cdot \frac{x+3}{x+1}

Cancel the common term in the numerator and denominator.

$\frac{x+7}{x+1} \cdot \frac{1}{x+1}

Multiply the fractions.

$\frac{x+7}{(x+1)^2}

$\frac{x+7}{x^2+2x+1}

The expression is simplified to one rational expression.

Suppose the expression is equal to 0.

$\frac{x+7}{x^2+2x+1}=0

Do cross multiplication.

${x+7}=0\times (}{x^2+2x+1})

Any number or variable multiplied by 0 gives 0.

${x+7}=0

Subtract 7 from both sides of the equation.

${x+7-7}=0-7

x = –7

The value of x is –7.

7 0
3 years ago
A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and
mr Goodwill [35]

Answer:

Bias for the estimator = -0.56

Mean Square Error for the estimator = 6.6311

Step-by-step explanation:

Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.

To find - Determine the bias and the mean squared error for this estimator of the mean.

Proof -

Let us denote

X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)

Now,

An estimate of mean, μ is suggested as

\mu = \frac{3X_{1} + 4X_{2}  }{8}

Now

Bias for the estimator = E(μ bar) - μ

                                    = E( \frac{3X_{1} + 4X_{2}  }{8}) - 4.5

                                    = \frac{3E(X_{1}) + 4E(X_{2})}{8} - 4.5

                                    = \frac{3(4.5) + 4(4.5)}{8} - 4.5

                                    = \frac{13.5 + 18}{8} - 4.5

                                    = \frac{31.5}{8} - 4.5

                                    = 3.9375 - 4.5

                                    = - 0.5625 ≈ -0.56

∴ we get

Bias for the estimator = -0.56

Now,

Mean Square Error for the estimator = E[(μ bar - μ)²]

                                                             = Var(μ bar) + [Bias(μ bar, μ)]²

                                                             = Var( \frac{3X_{1} + 4X_{2}  }{8}) + 0.3136

                                                             = \frac{1}{64} Var( {3X_{1} + 4X_{2}  }) + 0.3136

                                                             = \frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})]  }) + 0.3136

                                                             = \frac{1}{64} [{3(57.76) + 4(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [7(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [404.32]  } + 0.3136

                                                             = 6.3175 + 0.3136

                                                              = 6.6311

∴ we get

Mean Square Error for the estimator = 6.6311

6 0
3 years ago
8) A pyramid has a rectangluar base with length 12 km and width of 5 km. If the volume is 200
SashulF [63]

Hi there!

\large\boxed{h = 10km}

We know that the equation for the volume of a pyramid is:

V = 1/3(bh)

We know that:

V = 200 km³

b = 12 × 5 = 60 km²

We can plug these into the equation:

200 = 1/3(60)(h)

Simplify:

200 = 20h

Divide both sides by 20:

200/20 = 20h/20

h = 10 km

6 0
2 years ago
Isabella spent less than $14.00 for glass beads ,paintbrushes ,poster board,and paint she spends $1.68 on beads and $3.96 on pai
Eduardwww [97]
 Your answer is 19.53$ if you do add.
7 0
3 years ago
In a class of 24 students , 13 students sold over 150 raffle tickets each and the rest of the class sold about 60 raffle tickets
ioda
Yes. Because 150x13=1950. then 1950+60=2610. so yes they met their goal
8 0
3 years ago
Other questions:
  • wayne has a recipe on a 3inch by 5inch index card that he wants to enlarge to 15 inches long. how wide will the enlargement be?
    7·1 answer
  • What is the prime factorization for 192
    11·1 answer
  • Two consecutive odd integers have a sum of 36
    7·1 answer
  • In conducting an ABC analysis, the A column should be tasks that are ____, B should be tasks that are _____, and C should be tas
    8·1 answer
  • A person walked x feet and half that length again
    10·1 answer
  • Please please please help, I give brainliest to first answer(not random nonsense)A pool is in the shape of a right rectangular p
    13·2 answers
  • Why is a wheelbarrow and example of a 2nd class lever
    7·1 answer
  • A triangle has an area of 400 square inches. The length of the base of the triangle is 10 inches. What is the height of the tria
    7·1 answer
  • Transpose for p<br> w = p + cg <br><br><br> Make h the subject <br> m = r - h + 4d
    14·1 answer
  • Question 1 (1 point)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!