A -76x+76=-76x+76−76x+76=−76x+76minus, 76, x, plus, 76, equals, minus, 76, x, plus, 76 (Choice B) B 76x+76=-76x+7676x+76=−76x+76
Pie
Answer:
b
Step-by-step explanation:
i could be wrong
Amount of car loan taken by Scott = $5500
Amount of loan paid back by Scott = $7370
Then
Amount of money paid as interest by Scott = (7370 - 5500) dollars
= 1870 dollars
Then
Percentage of interest given for the car loan = (1870/5500) * 100
= 1870/55
= 34 percent
So Scott had to pay a total interest rate of 34% in the four years.I hope the procedure is simple enough for you to understand and solve future problems.
Answer:
d) The limit does not exist
General Formulas and Concepts:
<u>Calculus</u>
Limits
- Right-Side Limit:

- Left-Side Limit:

Limit Rule [Variable Direct Substitution]: 
Limit Property [Addition/Subtraction]: ![\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%20%3D%20%20%5Clim_%7Bx%20%5Cto%20c%7D%20f%28x%29%20%5Cpm%20%5Clim_%7Bx%20%5Cto%20c%7D%20g%28x%29)
Step-by-step explanation:
*Note:
In order for a limit to exist, the right-side and left-side limits must equal each other.
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Find Right-Side Limit</u>
- Substitute in function [Limit]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

<u>Step 3: Find Left-Side Limit</u>
- Substitute in function [Limit]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

∴ Since
, then 
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer:
Matrix multiplication is not conmutative
Step-by-step explanation:
The matrix multiplication can be performed if the number of columns of the first matrix is equal to the number of rows of the second matrix
Let A with dimension mxn and B with dimension nxp represent two matrix
The multiplication of A by B is a matrix C with dimension mxp, but the multiplication of B by A is can't be calculated because the number of columns of B is not the number of rows of A. Therefore, you can notice that is not conmutative in general.
But even if the multiplication of AB and BA is defined (For example if A and B are squared matrix of 2x2) the multiplication is not necessary conmutative.
The matrix multiplication result is a matrix which entries are given by dot product of the corresponding row of the first matrix and the corresponding column of the second matrix:
![A=\left[\begin{array}{ccc}a11&a12\\a21&a22\end{array}\right]\\B= \left[\begin{array}{ccc}b11&b12\\b21&b22\end{array}\right]\\AB = \left[\begin{array}{ccc}a11b11+a12b21&a11b12+a12b22\\a21b11+a22b21&a21b12+a22b22\end{array}\right]\\\\BA=\left[\begin{array}{ccc}b11a11+b12a21&b11a12+b12a22\\b21a11+b22ba21&b21a12+b22a22\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11%26a12%5C%5Ca21%26a22%5Cend%7Barray%7D%5Cright%5D%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11%26b12%5C%5Cb21%26b22%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11b11%2Ba12b21%26a11b12%2Ba12b22%5C%5Ca21b11%2Ba22b21%26a21b12%2Ba22b22%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CBA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11a11%2Bb12a21%26b11a12%2Bb12a22%5C%5Cb21a11%2Bb22ba21%26b21a12%2Bb22a22%5Cend%7Barray%7D%5Cright%5D)
Notice that in general, the result is not the same. It could be the same for very specific values of the elements of each matrix.
Answer:
= 
Step-by-step explanation: