Biological dyes work by adhering to various biological parts. Different dyes adhere to the different constituents of the cellular membranes, other attach to the proteins, carbohydrates, or lipids.
Some dyes are specific to the cell, and attach to the constituents of those specific cells only.
Answer:
This is due to the event of Speciation that happened for the rodents in Island B but not for the rodents in Island C.
Explanation:
- Due to splitting of the population,
- The sub-population of rodents formed in Island B are B1 and B2.
- The sub-population of rodents formed in Island C are C1 and C2.
- In case of Island B, each of the B1 and B2 sub-populations that got split from each other developed certain mutations that were necessary for them to adapt to the particular diverse environment each of them were exposed to, through the period of 50,000 years. These mutations were so varied that reproductive isolation was generated between them that resulted in each of them to develop into different species.Hence, speciation happens here and B1 and B2 are incapable of inter-breeding.
- In case of Island C, each of the C1 and C2 sub-populations that got split might have got exposed to similar environmental change or no environmental change or the environmental change might have been too small to cause drastic change in each of the sub-populations. As a result of this the two sub-populations might have acquired certain mutations to adapt to the environment each of them were exposed to, through a period of 100,000 years. These mutations might not have been too variable or contrasting to cause reproductive isolation between C1 and C2. Hence, no new speciation happens here and C1 and C2 are capable of inter-breeding.
<u> Allele frequencies to change from one generation to the next.-</u>
<u>B. </u><u>Mutation</u><u>; C. Random genetic drift; D. </u><u>Migration</u><u>; F. Natural selection</u>
- Selection, mutation, migration, and genetic drift are the mechanisms that effect changes in allele frequencies.
- When one or more of these forces are acting, the population violates Hardy-Weinberg assumptions, and evolution occurs.
Why do allele frequencies change from one generation to the next?
Random selection: Allele frequencies may fluctuate from one generation to the next when people with particular genotypes outlive those with different genotypes.
No mutation: Allele frequencies may fluctuate from one generation to the next if new alleles are produced via mutation or if alleles mutate at different rates.
What are 5 factors that cause changes in allele frequency?
- A population, a collection of interacting individuals of a single species, exhibits a change in allele frequency from one generation to the next due to five main processes.
- These include natural selection, gene flow, genetic drift, and mutation.
Learn more about allele frequency
brainly.com/question/7719918
#SPJ4
<u>The complete question is -</u>
Identify the evolutionary forces that can cause allele frequencies to change from one generation to the next. Check all that apply
A. Inbreeding
B. Mutation,
C. random genetic drift
D. migration
E. extinction
F. natural selection
The Avery–MacLeod–McCarty experiment was an experimental demonstration, reported in 1944 by Oswald Avery, Colin MacLeod, and Maclyn McCarty, that DNA is the substance that causes bacterial transformation, in an era when it had been widely believed that it was proteins that served the function of carrying genetic.
Answer:
Explanation:
I have been raised under an autthoritative parenting style, and my parents were both raised under an authoritarian style (it was more evident in my mother, because my father's mum died when he was 13). I think it was authoritative because they didn't let me do whatever I wanted, but they also didn't keep so much control on me, so I had certain level of freedom, as long as I didn't break anything xD