1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
3 years ago
12

In a metal fabrication​ process, metal rods are produced to a specified target length of 15 feet. Suppose that the lengths are n

ormally distributed. A quality control specialist collects a random sample of 16 rods and finds the sample mean length to be 14.8 feet and a standard deviation of 0.65 feet. What is the​ 95% confidence interval for the true mean length of rods produced by this​ process?
Mathematics
2 answers:
Vanyuwa [196]3 years ago
8 0

Answer:

95% confidence interval for the true mean length of rods produced by this​ process is [14.45 , 15.15].

Step-by-step explanation:

We are given that a metal fabrication​ process, metal rods are produced to a specified target length of 15 feet. Suppose that the lengths are normally distributed.

A quality control specialist collects a random sample of 16 rods and finds the sample mean length to be 14.8 feet and a standard deviation of 0.65 feet.

Firstly, the pivotal quantity for 95% confidence interval for the true mean length of rods is given by;

      P.Q. = \frac{\bar X - \mu}{\frac{s}{\sqrt{n} } } ~ t_n_-_1

where, \bar X = sample mean length = 14.8 feet

             s = sample standard deviation = 0.65 feet

            n = sample of rods = 16

            \mu = true mean

<em>Here for constructing 95% confidence interval we have used t statistics because we don't know about population standard deviation.</em>

So, 95% confidence interval for the population​ mean, \mu is ;

P(-2.131 < t_1_5 < 2.131) = 0.95  {As the critical value of t at 15 degree of

                                               freedom are -2.131 & 2.131 with P = 2.5%}

P(-2.131 < \frac{\bar X - \mu}{\frac{s}{\sqrt{n} } } < 2.131) = 0.95

P( -2.131 \times {\frac{s}{\sqrt{n} } } < {\bar X - \mu} < 2.131 \times {\frac{s}{\sqrt{n} } } ) = 0.95

P( \bar X-2.131 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+2.131 \times {\frac{s}{\sqrt{n} } } ) = 0.95

<u>95% confidence interval for </u>\mu = [ \bar X-2.131 \times {\frac{s}{\sqrt{n} } } , \bar X+2.131 \times {\frac{s}{\sqrt{n} } } ]

                                             = [ 14.8-2.131 \times {\frac{0.65}{\sqrt{16} } } , 14.8+2.131 \times {\frac{0.65}{\sqrt{16} } } ]

                                             = [14.45 , 15.15]

Hence, 95% confidence interval for the true mean length of rods produced by this​ process is [14.45 , 15.15].

Leto [7]3 years ago
3 0

Answer:

95% Confidence interval: (14.4537 ,15.1463)

Step-by-step explanation:

We are given the following in the question:

Population mean, μ = 15 feet

Sample mean, \bar{x} = 14.8 feet

Sample size, n = 16

Alpha, α = 0.05

Sample standard deviation, σ = 0.65 feet

Degree of freedom = n - 1 = 15

95% Confidence interval:

\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}  

Putting the values, we get,  

t_{critical}\text{ at degree of freedom 15 and}~\alpha_{0.05} = \pm 2.1314  

14.8 \pm 2.1314(\dfrac{0.65}{\sqrt{16}} ) \\\\= 14.8 \pm 0.3463 = (14.4537 ,15.1463)  

is the required confidence interval for the true mean length of rods.

You might be interested in
Urgent. Please show all work
myrzilka [38]

Answer:

\displaystyle f'(x) = \frac{4}{x^2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    \displaystyle \lim_{x \to c} x = c

Differentiation

  • Derivatives
  • Derivative Notation

The definition of a derivative is the slope of the tangent line:                             \displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

<em />\displaystyle f(x) = -\frac{4}{x}

<u>Step 2: Differentiate</u>

  1. [Function] Substitute in <em>x</em>:                                                                            \displaystyle f(x + h) = -\frac{4}{x + h}
  2. Substitute in functions [Definition of a Derivative]:                                   \displaystyle f'(x) = \lim_{h \to 0} \frac{-\frac{4}{x + h} - \big( -\frac{4}{x} \big)}{h}
  3. Simplify:                                                                                                        \displaystyle f'(x) = \lim_{h \to 0} \frac{4}{x(x+ h)}
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                          \displaystyle f'(x) = \frac{4}{x(x+ 0)}
  5. Simplify:                                                                                                        \displaystyle f'(x) = \frac{4}{x^2}

∴ the derivative of the given function will be equal to 4 divided by x².

---

Learn more about derivatives: brainly.com/question/25804880

Learn more about calculus: brainly.com/question/23558817

---

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

6 0
2 years ago
Given g(x)= 4x+4, find g(4)
Kipish [7]

\large\underline{\bf\red{Solution:-}}

Given that : g(x) = 4x + 4 .

So , in order to find the value of g(4) , just substitute x = 4 in the given function .

Here ,

=> g(x) = 4x + 4 .

=> g(4) = 4 × 4 + 4 .

=> g(4) = 16 + 4 .

=> g(4) = 20 .

<u>Hence</u><u> </u><u>the</u><u> </u><u>required</u><u> answer</u><u> is</u><u> </u><u>2</u><u>0</u><u>. </u>

4 0
3 years ago
Lia wants to estimate 4 1/7 x 3 3/5 To estimate, she simplifies the expression 4 x 3 1/2 .
Temka [501]
Given:
4 1/7 * 3 3/5

4 1/7 = (4*7)+1/7 = 29/7
3 3/5 = (3*5)+3/5 = 18/5

29/7 * 18/5 = 29 * 18 / 7 * 5 = 522 / 35 = 14.91

Simplified expression.
4 x 3 1/2

3 1/2 = (3*2)+1/2 = 7/2

4 * 7/2 = 4*7 / 2 = 28 / 2 = 14

It is a close estimate.   Actual: 14.91 vs Estimate: 14
6 0
3 years ago
Someone help me with this
Genrish500 [490]

Answer:

  $0.03

Step-by-step explanation:

The 1.4% interest rate given is an annual rate. So, the daily interest rate is 1/365 of that value. The first day's interest is 1/365 of 1.4% of $720:

  1/365 × 0.014 × $720 ≈ $0.0276 ≈ $0.03 . . . . first day's interest

4 0
2 years ago
The slope of a line parallel to y=1/2x-4 is ?
Dmitry [639]

Answer:

1/2x

Step-by-step explanation:

y=1/2x-4

1/2x is the slope, x is the slope in any linear equation

3 0
3 years ago
Read 2 more answers
Other questions:
  • A girrafe runs at a rate of 32 miles per hour. Which equation models the situation?
    10·1 answer
  • 800m or 799,999mm which is greater
    6·2 answers
  • Gary has a 12gallon gas tank when he filled his tank up he pumped 8 gallons of gas what fraction of the tank had been empty
    8·1 answer
  • X - 2y + 2z = -22 <br> x + 3y - z = 03 <br> x + 2y + 3z = -15
    10·1 answer
  • Given that f(x) = 2x + 5 and g(x) = x − 7, solve for f(g(x)) when x = −3.
    9·1 answer
  • Find the slope of the line passing through the points A(-1, 1) and B(4,-5).
    6·1 answer
  • A sector with an area of \goldE{48\pi,\text{cm}^2}48πcm 2 start color #a75a05, 48, pi, start text, c, m, end text, squared, end
    12·1 answer
  • Can someone please solve this
    6·1 answer
  • = Test: Chapter 1-4 Test
    11·1 answer
  • The number of children's movie tickets sold over a period of a week is
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!