Answer:
m/s is answer for your questions
Answer:
For a velocity versus time graph how do you know what the velocity is at a certain time?
Ans: By drawing a line parallel to the y axis (Velocity axis) and perpendicular to the co-ordinate of the Time on the x axis (Time Axis). The point on the slope of the graph where this line intersects, will be the desired velocity at the certain time.
_____________________________________________________
How do you know the acceleration at a certain time?

Hence,
By dividing the difference of the Final and Initial Velocity by the Time Taken, we could find the acceleration.
_________________________________________________________
How do you know the Displacement at a certain time?
Ans: As Displacement equals to the area enclosed by the slope of the Velocity-Time Graph, By finding the area under the slope till the perpendicular at the desired time, we find the Displacement.
_________________________________________________________
Answer:
585 nm
Explanation:
The formula that gives the position of the m-th maximum (bright fringe) relative to the central maximum in the interference pattern produced by diffraction from double slit is:


where
m is the order of the maximum
is the wavelength
D is the distance of the screen from the slits
d is the separation between the slits
The distance between two consecutive bright fringes therefore is given by:

In this problem we have:
(distance between two bright fringes)
D = 2.0 m (distance of the screen)
d = 3.0 x 10−3 m (separation between the slits)
Solving for
, we find the wavelength:

velocity is magnitude and direction. its unit is meter per second
They're extremely small, occupying a very small volume, to the point where something like wind resistance that we think about with accelerating large objects like planes becomes completely irrelevant. A rogue electron can fly straight through most solid objects through the "empty space" between atoms. Their mass is also extremely small, 9.1*10⁻³¹ kg, making them relatively easy to accelerate to near light speeds (in comparison to other forms of matter) as it takes very little energy to set them into motion. Particle accelerators accelerate electrons to 99% of the speed of light in the real world every day.