Answer:
Too much screen time can be a bad thing: Children who consistently spend more than 4 hours per day watching TV are more likely to be overweight. Kids who view violent acts on TV are more likely to show aggressive behavior, and to fear that the world is scary and that something bad will happen to them. When we considered the whole television chain of production, distribution and consumption, we found that the largest environmental impact associated with a television programme was not the energy consumed in making it, but the energy used by the millions of televisions, set-top boxes and other consumer devices involved
Explanation:
Answer:
v = 20.31 m/s
Explanation:
p = mv -> v = p/m = 32,500 kg*m/s / 1,600 kg = 20.31 m/s
Answer:
Total impulse =
= Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.

Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:

The final momentum of the car is given as:

Therefore, the impulse is given as:

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.
Answer:
90°
Explanation:
The angle will be 90° when momentum for a system can be conserved in one direction while not being conserved in another.
The example can be
If we apply force on an object horizontally in west direction, then as in other direction south or north we cannot apply the principal of momentum conservation.
The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892