Answer:
y = -1/4x + -6
Step-by-step explanation:
Given the domain {-4, 0, 5}, what is the range for the relation 12x 6y = 24? a. {2, 4, 9} b. {-4, 4, 14} c. {12, 4, -6} d. {-12,
xz_007 [3.2K]
The domain of the function 12x + 6y = 24 exists {-4, 0, 5}, then the range of the function exists {12, 4, -6}.
<h3>How to determine the range of a function?</h3>
Given: 12x + 6y = 24
Here x stands for the input and y stands for the output
Replacing y with f(x)
12x + 6f(x) = 24
6f(x) = 24 - 12x
f(x) = (24 - 12x)/6
Domain = {-4, 0, 5}
Put the elements of the domain, one by one, to estimate the range
f(-4) = (24 - 12((-4))/6
= (72)/6 = 12
f(0) = (24 - 12(0)/6
= (24)/6 = 4
f(5) = (24 - 12(5)/6
= (-36)/6 = -6
The range exists {12, 4, -6}
Therefore, the correct answer is option c. {12, 4, -6}.
To learn more about Range, Domain and functions refer to:
brainly.com/question/1942755
#SPJ4
1. Write as an algebraic equation:
12 + n ≤ 2n - 8
2. Solve for n.
12 + n - 12 ≤ 2n - 8 - 12
n ≤ 2n - 20
n - 2n ≤ 2n - 20 - 2n
-n ≤ -20
Multiply both sides by -1 (this means you must flip the inequality sign).
n ≥ 20
FINAL ANSWER: n ≥ 20
Hope this helps! Feel free to ask for clarification.
Answer:
The quotient of (x^2-4xy) is x-4y
Step-by-step explanation:
18.5-17.25= 1.25 hope this helps. dvhftftdrdrdessesehuuhughgygyfyfgfgvhbhfgfgfgvgvgfgg