1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
2 years ago
6

In a lot (collection) of 100 light bulbs, there are 5 defective bulbs. an inspector inspects 10 bulbs selected at random. find t

he probability of finding at least one defec- tive bulb. hint: first compute the probability of finding no defectives in the sample.
Mathematics
1 answer:
Vedmedyk [2.9K]2 years ago
5 0
Probability of finding no defective bulb
=95/100*94/99....86/91
=95!/(85!) / (100!/90!)
= 110983/190120
=>
Probability of finding at least one defective bulb
=1-110983/190120
= 79137/190120
= 0.41625 (to 5 decimal places)
You might be interested in
Store A is advertising a sale that will reduce prices on all merchandise by 15%. Store B is advertising a sale that will reduce
dalvyx [7]
Store A = 15% Store B = 1/5 = 20% 20-15 = 5% Store B is reducing by 5% more, so c
7 0
3 years ago
Read 2 more answers
Which is not Equivalent to 3:5 <br> A.30:50<br> B.21:28<br> C:15:28<br> D.9:15
kirza4 [7]

Answer:

B.

Step-by-step explanation:

Since 21 is divided by 3 you might think that it is equivalent but remeber you have to divide by both sides, so if you divide 21 by 7 it works but 28 by seven does not! Hope this helps!

3 0
2 years ago
First person gets brainliest 3
ser-zykov [4K]

Answer:

heyyyyyyytyyyyyyy

Step-by-step explanation:

meeeeeeeeeeeeeeeeeweweewe

5 0
2 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
An art teacher has 6 1/4 gallons of paint to pour into containers. If each container holds 1/2 gallon, what is the maximum numbe
OleMash [197]

Answer:

12

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • All possible ways to solve 35-17
    14·1 answer
  • How do you do this ​
    8·1 answer
  • Consider the equation below. -2(5x + 8) = 14 + 6x​
    14·1 answer
  • I need help. 2/7 of _ is 14?
    7·1 answer
  • 10 ft
    6·1 answer
  • A fly-fishing line is cast in a parabolic motion with an initial velocity of 30 meters per second at an angle of 60° to the hori
    9·2 answers
  • 5x + 3y = 27 and y = 2x – 2
    9·1 answer
  • The average number of passes in a football game is right skewed with mean 75 and variance 961. If we sample 100 random games, wh
    8·1 answer
  • Function operations and composition<br><br> g(a)= 4a +4<br> h(a)= -4a + 5<br> Find (g + h)(a)
    8·1 answer
  • Find the 7th term of the geometric sequence whose common ratio is 2/3 and whose first term is 4
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!