1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
3 years ago
11

What affect will adding sugar have on the viscosity of water?

Chemistry
2 answers:
kati45 [8]3 years ago
7 0
The addition of some amount of sugar to water increases its viscosity. Viscosity is a term which means the resistance of the liquid to flow. Addition of sugar would give water a certain "stickiness" that would lessen its ability to flow. 
Radda [10]3 years ago
4 0
Sugar increases the viscosity of water

hope that helps
You might be interested in
A flask of volume 2.0 liters, provided with a stopcock, contains oxygen at 20 oC, 1.0 ATM (1.013X105 Pa). The system is heated t
leonid [27]

Answer:

1.27 atm is the final pressure of the oxygen in the flask (with the stopcock closed).

2.6592 grams of oxygen remain in the flask.

Explanation:

Volume of the flask remains constant = V = 2.0 L

Initial pressure of the oxygen gas = P_1=1.0 atm

Initial temperature of the oxygen gas = T_1=20^oC =293.15 K

Final pressure of the oxygen gas = P_2=?

Final temperature of the oxygen gas = T_2=100^oC =373.15 K

Using Gay Lussac's law:

\frac{P_1}{T_1}=\frac{P_2}{T_2}

P_2=\frac{P_1\times T_2}{T_1}=\frac{1 atm\times 373.15 K}{293.15 K}=1.27 atm

1.27 atm is the final pressure of the oxygen in the flask (with the stopcock closed).

Moles of oxygen gas = n

P_1V_1=nRT_1 (ideal gas equation)

n=\frac{P_1V_1}{RT_1}=\frac{1 atm\times 2.0 L}{0.0821 atm l/mol K\times 293.15 K}=0.08310 mol

Mass of 0.08310 moles of oxygen gas:

0.08310 mol × 32 g/mol = 2.6592 g

2.6592 grams of oxygen remain in the flask.

6 0
3 years ago
What mass of iron(II) oxide must be used in the reaction given by the equation below to release 44.7 kJ? 6FeO(s) + O2(g) => 2
zavuch27 [327]

<u>Answer:</u> The mass of iron (II) oxide that must be used in the reaction is 30.37

<u>Explanation:</u>

The given chemical reaction follows:

6FeO(s)+O_2(g)\rightarrow 2Fe_3O_4(s);\Delta H^o=-635kJ

By Stoichiometry of the reaction:

When 635 kJ of energy is released, 6 moles of iron (II) oxide is reacted.

So, when 44.7 kJ of energy is released, \frac{6}{635}\times 44.7=0.423mol of iron (II) oxide is reacted.

Now, calculating the mass of iron (II) oxide by using the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

Moles of iron (II) oxide = 0.423 moles

Molar mass of iron (II) oxide = 71.8 g/mol

Putting values in above equation, we get:

0.423mol=\frac{\text{Mass of FeO}}{71.8g/mol}\\\\\text{Mass of FeO}=(0.423mol\times 71.8g/mol)=30.37g

Hence, the mass of iron (II) oxide that must be used in the reaction is 30.37

7 0
4 years ago
Angela is analyzing the fracture pattern of a window. She notes that the cracks stop when they intersect. Knowing this, what can
diamong [38]

Answer:

b.what type of object broke the glass

Explanation:

The point of intersection of all the fracture patterns of the window speaks to the shape, type and dimension of the object that broke the glass.

7 0
4 years ago
describe a general rule for predicting the motion of an object that is being pushed or pulled by unbalanced forces?
7nadin3 [17]

<span>7th grade activities</span>

Force and Motion

(with Work)

 

2010-2011

 

 

<span>
</span>

Outline of Topics:

<span>1.     </span><span>Describing Motion: Graphing, Speed and Velocity  </span>

<span>2.   Describing Motion: Changing Velocity </span>

<span>3.   Forces, Their Sizes and Direction </span>

<span>4.   Force and Mass </span>

<span>5.   Its a grave matter: gravity and inertia </span>

<span>6.   Weight and Mass </span>

<span>7.   All work and no play: Work and Energy </span>

 

Appendices

<span>1:  7th Grade Vocabulary Related to Force and Motion</span>

<span>2:  Motion Detector Directions</span>

<span>3:  Day 1 Graphs with Focus Question at the End</span>

<span>4:  Day 1 Data Collection Sheet </span>

<span>5:  Day 2 Student Problem Sheet</span>

<span>6:  Day 2 Second Set of Problems</span>

<span>7:  Day 2 Graphs for is the Velocity Changing</span>

<span>8:  Day 3 Student Tables with Questions</span>

<span>9:  Day 4 Frame for Science Notebook</span>

<span>10:  Day 5 Skateboard Prediction and Actual Sheets</span>

<span>11:  Day 6 Data Table</span>

12: Day 7 Student Handout

13: Day 7 Force Arrows

<span>14:  Day 8 Data Analysis</span>

<span>15:  Uncovering Student Ideas in Physical Science probes</span>

<span>16:  National Enquirer advertisements</span>

<span>17: Excerpt from Joy Hakim’s The Story of Science: Newton at the Center, pages 172-183</span>

<span>18:  Directions for converting You Tube videos to another media file</span>

 

<span>
</span>

<span>First topic:  Describing motion</span>

A three-day exercise

Learning goals

<span>Reviewed from 6th grade (day 1): </span>

I can interpret a position versus time line graph to determine types of one-dimensional motion of an object.

I can draw a position versus time line graph given appropriate data.

I can represent changes in motion in a variety of ways, including words, motion arrows, graphs, and by acting out.

(Day 2) I can use the information in a position vs. time graph to determine the speed of an object.

<span>New for 7th grade: I can define velocity.</span>

(Day 3) I can distinguish between speed and velocity.

 

Topic Word Bank

<span> <span><span> <span> Speed </span> <span> Motion </span> </span> <span> <span> Velocity </span> <span> Direction </span> </span> <span> <span> Position </span> <span> Graph </span> </span> <span> <span> Distance </span> <span> Vertical </span> </span> <span> <span> Time </span> <span> Horizontal </span> </span> <span> <span> Rate of change </span> <span> Representation </span> </span> <span> <span> Slope </span> <span> <span>             Negative</span> </span> </span> <span> <span>   </span> <span> <span>             Positive</span> </span> </span> </span></span>

 

<span> <span><span> <span> Sequence of Experiences </span> </span> <span> <span> Day 1: Interpretation of a Position/Time Graph </span> <span> Pairs and whole group </span> <span> 10 minutes </span> </span> <span> <span> Day 1: Creation of a Position/Time Graph </span> <span> Lab groups and whole group </span> <span> 25 minutes </span> </span> <span> <span> Day 1: Making Sense of Multiple Representations </span> <span> Whole Group </span> <span> 10 minutes </span> </span> <span> <span> Day 2: Calculating Speed </span> <span> Pairs and whole group </span> <span> 23 minutes </span> </span> <span> <span> Day 2: Differentiating Speed and Velocity </span> <span> Pairs and whole group </span> <span> 18 minutes </span> </span> <span> <span> Day 2: Exit Slip </span> <span> Individually </span> <span> 5 minutes </span> </span> <span> <span> Day 3 Intro </span> <span> Whole class </span> <span> 3 minutes </span> </span> <span> <span> Day 3:Collecting Initial Data </span> <span> In pairs </span> <span> 12 minutes </span> </span> <span> <span> Day 3:Interpreting Data Parts 1 and 2 </span> <span> In pairs, then groups of 4 </span> <span> 20 minutes </span> </span> <span> <span> Day 3: Student Challenge </span> <span>   </span> <span>   </span> </span> <span> <span> Day 3: Class Discussion </span> <span> Whole class </span> <span> 7 minutes </span> </span> <span> <span> Day 4: Intro </span> <span>   </span> <span>   </span> </span> <span> <span> Day 4:Interpreting Data Parts 3, 4 and 5 </span> <span> Whole class </span> <span>   </span> </span> <span> <span> Day 4: Processing Information </span> <span> Individual and Paired </span> <span>   </span> </span> <span> <span> Day 4: Class Discussion </span> <span> Whole Class </span> <span>   </span> </span> <span> <span> Day 4: Exit Slip </span> <span> Individually </span> <span> 3 minutes </span> </span> </span></span> <span>
</span>

Day 1  <span>Focus Question:  What can be learned from different representations of motion?</span>

Materials and Preparation:

For the class:

<span><span><span><span /></span></span></span>

<span />





6 0
3 years ago
what is the correct answer for the calculation of a volume (in ml) with measured numbers 28.58/16x8.0
jeka94

Answer:

45

Explanation:

the answer is 45 due to the calculation of the master calculation

6 0
3 years ago
Other questions:
  • Is wine a homogenous mixure
    14·1 answer
  • What is the potential energy per unit charge
    12·1 answer
  • Consider the malate dehydrogenase reaction from the citric acid cycle. Given the listed concentrations, calculate the free energ
    9·1 answer
  • Give examples of Elements.
    15·2 answers
  • Small quantities of oxygen can be prepared in the laboratory by heating potassium chlorate, KClO3(s).
    6·1 answer
  • La
    14·1 answer
  • A solution has [H+] = 2.35 × 10-3 M. Find the [OH-] for this solution
    15·1 answer
  • I HAVE 6 MORE PAGES ON THIS HUUUUUUGE ASSIGNMENT!! WHO WANTS TO HELP?????????? i have alr done 22 pages!!
    5·2 answers
  • Which of the following diseases can be prevented by consuming safe drinking water? (a) Tuberculosis
    14·1 answer
  • Hola!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!