Answer:
ΔG° = 41.248 KJ/mol (298 K); the correct answer is a) 41 KJ
Explanation:
Ag+(aq) + 2NH3(aq) ↔ Ag(NH3)2+(aq)
⇒ Kf = 1.7 E7; T =298K
⇒ ΔG° = - RT Ln Kf.....for aqueous solutions
∴ R = 8.314 J/mol.K
⇒ ΔG° = - ( 8.314 J/mol.K ) * ( 278 K ) ln ( 1.7 E7 )
⇒ ΔG° = 41248.41 J/mol * ( KJ / 1000J )
⇒ ΔG° = 41.248 KJ/mol
Answer:
The player ran 91.44m.
Explanation:
The problem gives you the total distance between goal line to goal line in feet, and the answer must be given in meters, so you should convert the distance the player run from ft to m, because the player run the same distance from goal line to goal line to scores the touchdown.
So, you should apply the following conversion factor:

The player ran 91.44m.
Answer:
Density by giving the object it's weight/volume. State of matter by giving its chemical substances and physical shape.
Explanation:
State of matter, (solid, liquid, or a gas) determines the main physical property of a substance. If it's a liquid, it would have an indefinite shape/physical appearance. If the object is a solid than the shape would have a definite shape/physical appearance. Density is defined as mass per volume which means the weight of an object divided by the volume determines the density of the object. You would have the volume (the amount of space an object takes up) and the mass (weight of the object) if you have the objects density.
To conclude, both density and the objects state of matter determine the physical properties of a substance. "Density the weight and volume, and the state of matter is the shape/chemical properties of the substance."
Hope this helps.
Mechanical energy = mass x acceleration due to gravity x height
= 1x9.8x10 = 98J