Answer:
Convection currents are the result of differential heating. Lighter (less dense), warm material rises while heavier (more dense) cool material sinks. It is this movement that creates circulation patterns known as convection currents in the atmosphere, in water, and in the mantle of Earth.
Explanation:
Different atoms binds their outermost shell electrons with different amount of energy.
The amount of energy required to remove an electron from an atom is the ionization energy.
- Ionization energy measures the readiness of an atom to lose electrons.
- From the given problem, we can infer that in group O the ionization energy decreases down the group.
- Helium has the highest ionization energy.
- Down a group on the periodic table, ionization energy decrease because:
- atomic radii increases down the group.
- there is an increasing shielding/screening effect of inner shell electrons on the outermost shell electrons.
Learn more:
Ionization energy brainly.com/question/2153804
#learnwithBrainly
can be split into hydrogen and oxygen chemical property
is liquid at room temperature physical property
has a density of 1.0 g/cm³ physical property
reacts with certain metals chemical property
Explanation:
The physical properties of matter are the properties that occur when no change is occurring to a matter. They are usually observed with our senses or some simple laboratory experiments.
Some of the physical properties are boiling point, density, state of matter, e.t.c
The chemical properties are the properties that occurs when a matter undergoes some chemical changes.
For example rusting, decomposition, reactivity e.t.c
Learn more:
Chemical properties brainly.com/question/2376134
#learnwithBrainly
From the balanced equation 2KClO3 → 2KCl + 3O2, the coefficients are the following:
coefficient 2 in front of potassium chlorate KClO3
coefficient 2 in front of potassium chloride KCl
coefficient 3 in front of oxygen molecule O2
We got this balanced equation by identifying the number of atoms of each element that we have in the given equation KClO3 → KCl + O2.
Looking at the subscripts of each atom on the reactant side and on the product side, we have
KClO3 → KCl + O2
K=1 K=1
Cl=1 Cl=1
O=3 O=2
We can see that the oxygens are not balanced. We add a coefficient 2 to the 3 oxygen atoms on the left side and another coefficient 3 to the 2 oxygen
atoms on the right side to balance the oxygens:
2KClO3 → KCl + 3O2
The coefficient 2 in front of potassium chlorate KClO3 multiplied by the subscript 3 of the oxygen atoms on the left side indicates 6 oxygen atoms just as the coefficient 3 multiplied by the subscript 2 on the right side indicates 6 oxygen atoms.
The number of potassium K atoms and chloride Cl atoms have changed as well:
2KClO3 → KCl + 3O2
K=2 K=1
Cl=2 Cl=1
O=6 O=6
We now have two potassium K atoms and two chloride Cl atoms on the reactant side, so we add a coefficient 2 to the potassium chloride KCl on the product side:
2KClO3 → 2KCl + 3O2, which is our final balanced equation.
K=2 K=2
Cl=2 Cl=2
O=6 O=6
The potassium, chlorine, and oxygen atoms are now balanced.