Yes, it is. if you end up getting 4.85239854285696357835482938339158989............................... you wouldn't want to measure out exactly that much.
Answer:
x = 5√2
y = 5√6
z = 5√3
ΔABC ~ ΔBDC ~ ΔADB
Step-by-step explanation:
ΔABC, ΔBDC, and ΔADB are all similar triangles to each other.
By definition of similar triangles, the corresponding sides have the same ratios.
CD from ΔBDC corresponds to BD from ΔADB, and BD from ΔBDC corresponds to AD from ΔADB. So:
CD / BD = BD / AD
10 / x = x / 5
x² = 50
x = 5√2
Since ΔBDC is right, we can use the Pythagorean Theorem to solve for y:
CD² + BD² = BC²
10² + (5√2)² = y²
y² = 100 + 50 = 150
y = 5√6
Again, since ΔΔABD is right, we can use the Pythagorean Theorem to solve for z:
AD² + BD² = AB²
5² + (5√2)² = z²
z² = 25 + 50 = 75
z = 5√3
Answer:
-6 3/8 < -7/8
Step-by-step explanation:
Answer:
-6 3/8 < -7/8
Showing Work
Using the given inputs:
-6 3/8 -7/8
Rewriting these inputs as improper fractions:
-51/8 and -7/8
Since we have like denominators we compare the inputs by the numerators:
Therefore, comparison shows:
-6 3/8 < -7/8
Answer: 2*√18 + 3*√2 + √162 = 18*√2
Step-by-step explanation:
I guess that the equation is:
2*√18 + 3*√2 + √162
And we want to simplify it.
first 18 = 9*2
then we can write:
2*√18 = 2*√(9*2) = 2*3*√2 = 6*√2
and 162/9 = 18
then we can write:
√162 = √(9*18) = √9*√18 = 3√18
now we can use the previous step: √18 = 3*√2
and:
√162 = 3*(3*√2) = 9*√2
now we can write our equation as:
6√2 + 3√2 + 9√2 = (6 + 3 + 9)√2 = 18*√2
And now we can not simplify it further more, so here we end.