The inverse relation of the function f(x)=1/3x*2-3x+5 is f-1(x) = 9/2 + √(3x + 21/4)
<h3>How to determine the inverse relation?</h3>
The function is given as
f(x)=1/3x^2-3x+5
Start by rewriting the function in vertex form
f(x) = 1/3(x - 9/2)^2 -7/4
Rewrite the function as
y = 1/3(x - 9/2)^2 -7/4
Swap x and y
x = 1/3(y - 9/2)^2 -7/4
Add 7/4 to both sides
x + 7/4= 1/3(y - 9/2)^2
Multiply by 3
3x + 21/4= (y - 9/2)^2
Take the square roots
y - 9/2 = √(3x + 21/4)
This gives
y = 9/2 + √(3x + 21/4)
Hence, the inverse relation of the function f(x)=1/3x*2-3x+5 is f-1(x) = 9/2 + √(3x + 21/4)
Read more about inverse functions at:
brainly.com/question/14391067
#SPJ1
Answer:
77%
Step-by-step explanation:
(75+76+77+80) / 4 = 77
Answer:
y = 6x + 24
Step-by-step explanation:
Remember, any line can be parallel to y= 6x + 8 as long as it has the same slope (m, or in this case 6), and a different b (in this case 8).