Answer:
67 degrees
Step-by-step explanation:
first find angle abc by subtracting 68 from 101 == 33
then add it to half of 68 (34) to get angle abe
we know it is half because if there is a bisector, both angles cbe and ebd are equal
Answer:
Circumscribed circle: Around 80.95
Inscribed circle: Around 3.298
Step-by-step explanation:
Since C is a right angle, when the circle is circumscribed it will be an inscribed angle with a corresponding arc length of 2*90=180 degrees. This means that AB is the diameter of the circle. Since the cosine of an angle in a right triangle is equivalent to the length of the adjacent side divided by the length of the hypotenuse:

To find the area of the circumscribed circle:

To find the area of the inscribed circle, you need the length of AC, which you can find with the Pythagorean Theorem:

The area of the triangle is:

The semiperimeter of the triangle is:

The radius of the circle is therefore 
The area of the inscribed circle then is
.
Hope this helps!
Answer:
Ic² + b²l = 13 units.
Step-by-step explanation:
We have to evaluate the expression Ic² + b²l with unknowns b and c and having the values of b and c respectively - 3 and - 2.
Now, Ic² + b²l
= I(- 2)² + (- 3)²l {Putting the values of b and c}
= I4 + 9l
= I13l
= 13 units.
Therefore, Ic² + b²l = 13 units. (Answer)
I got 65/153 since you actually multiply by the reciprocal of the second fraction.
Answer:
A
Step-by-step explanation: