D it causes lava to rush out faster
Q1. The answer is 1.
It can be calculated using the equation:
(1/2)ⁿ = x
x - decimal amount remaining,
n - a number of half-lives.
x = 50% = 50/100 = 0.5
n = ?
(1/2)ⁿ = 0.5
log((1/2)ⁿ) = log(0.5)
n * log(1/2) = log(0.5)
n * log(0.5) = log(0.5)
n = log(0.5)/log(0.5)
n = 1
Q10. The answer is 2.
It can be calculated using the equation:
(1/2)ⁿ = x
x - decimal amount remaining,
n - a number of half-lives.
Rhyolite #2 has 25% of the parent H remaining:
x = 25% = 25/100 = 0.25
n = ?
(1/2)ⁿ = 0.25
log((1/2)ⁿ) = log(0.25)
n * log(1/2) = log(0.25)
n * log(0.5) = log(0.25)
n = log(0.25)/log(0.5)
n = -0.602 / - 0.301
n = 2
Q3. The answer is 100 million years.
A number of half-lives (n) is a quotient of total time elapsed (t) and length of half-life (H):
n = t/H
n = 1
t = ?
H = 100 000 000 years
n = t/H
t = n * H
t = 1 * 100 000 000 years
t = 100 000 000 years<span>
</span>
Answer:
these chromatids separate longitudinally to become individual chromosomes.
one chromosomes is composed of and DNA molecule
The Hardy-Weinberg equation is as follows:


Where:
(convert all % to decimals)
p= homozygous dominant
q= homozygous recessive
pq= heterozygous
While you did not specify whether the 0.2 frequency was for dominant or recessive, we can still figure out the answer.
Using the 1st equation, we can solve for the other dominant/recessive frequency:
1-0.2=0.8
Meaning that:
p= 0.8 & q=0.2
If the heterozygouz frequency is 2pq, then it becomes a simple "plug & chug" sort of approach.
2(0.8)(0.2)= 2(0.16)= 0.32
So, the heterozygous frequency would be:
0.32
Hope this helps!
Acute HIV infection is the first phase of HIV infection. The early HIV test can detect HIV during the acute HIV phase. The best test for detecting HIV infection is the early HIV test (also known as NAAT/RNA testing)
I Hope This Helped!