It would cause a drop <span>but I am not sure double check other answers </span>
Answer:
The final volume will be 5.80 L
Explanation:
Step 1: Data given
Number of moles gas = 0.140 moles
Volume of gas = 2.78 L
Number of moles added = 0.152 moles
Step 2: Calculate the final volume
V1/n1 = V2/n2
⇒ with V1 = the initial volume = 2.78 L
⇒ with n1 = the initial number of moles = 0.140 moles
⇒ with V2 = The new volume = TO BE DETERMINED
⇒ with n2 = the new number of moles = 0.140 + 0.152 = 0.292 moles
2.78/0.140 = V2 /0.292
V2 = 5.80 L
The final volume will be 5.80 L
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol