Answer: Option (d) is the correct answer.
Explanation:
Electronegativity value of hydrogen is 2.2.
Electronegativity value of chlorine is 3.16.
Electronegativity value of carbon is 2.55.
Electronegativity value of oxygen is 3.44.
Electronegativity value of nitrogen is 3.04.
Electronegativity value of sodium is 0.93.
Electronegativity value of iodine is 2.66.
Therefore, calculate the electronegativity difference between the bonded atoms as follows.
- Electronegativity difference of HCl = Electronegativity value of chlorine - electronegativity value of hydrogen
= 3.16 - 2.2
= 0.96
- Electronegativity difference of CO = Electronegativity value of oxygen - electronegativity value of carbon
= 3.44 - 2.55
= 0.89
- Electronegativity difference of
= Electronegativity value of nitrogen - electronegativity value of nitrogen
= 3.04 - 3.04
= 0
- Electronegativity difference of NaI = Electronegativity value of iodine - electronegativity value of sodium
= 2.66 - 0.93
= 1.73
So, we can see that highest electronegativity difference is 1.73 and it is shown by NaI molecule.
Thus, we can conclude that a group 1 alkali metal bonded to iodide, such as NaI has the greatest electronegativity difference between the bonded atoms.
Answer:
Carbon dioxide, water, and sunlight
Explanation:
<span>physical changes
Physical changes happen when something undergoes a transformation that does not alter their total inward arrangement. This appears differently in relation to the idea of compound change in which the creation of a substance changes or at least one substances consolidate or separate to frame a new one</span>
Answer:
Fat
Alkali
Explanation:
Fat and alkali are the two primary raw materials needed to manufacture soap.
Sodium hydroxide or potassium hydroxide is generally used as an alkali. The use of alkali depends on the intended application of the soap.
Raw animal fat was used in the past but these days, processed fat is used in the soap manufacturing process. Vegetable fats ( e.g, palm oil, olive oil, coconut oil) are also being used in soap manufacturing.
Additives are also used to enrich the color and texture of the soap.