<u>Answer:</u> The
of the reaction at given temperature is -12.964 kJ/mol.
<u>Explanation:</u>
For the given chemical reaction:

The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 0 J (at equilibrium)
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 
Putting values in above equation, we get:

Hence, the
of the reaction at given temperature is -12.964 kJ/mol.
I belive its D if not right sorry.
Answer:
by adding water into the mix
Explanation:
this will dissolve the salt
Answer:a weak acid and a weak base
Explanation:
ANSWER: C) Law of Conservation of Mass
EXPLANATION: In the given cycle, it is seen that th sediments are layered and gets compressed into sedimentary rocks which eventually gets heated and compressed to form metamorphic rocks. But, the total amount of minerals present in the sediments remains the same throughout any stage of the cycle.
This proves the law of conservation of mass which states that mass can not be created nor be destroyed, it can only be transferred from one form to another. So, in this case, only phase transition occurred but the component which is mineral inside the sediments remains constant.
Therefore, the answer is law of conservation of mass.