To answer this question, we will use the general gas law which states that:
PV = nRT where:
P is the pressure of the gas = <span>10130.0 kPa
</span>V is the volume of the gas = 50 liters
n is the number of moles that we want to calculate
R is the gas constant = <span>8.314 L∙kPa/K∙mol
T is the temperature = 300+273 = 573 degree kelvin
Substitute with the givens in the equation to get the number of moles as follows:
</span><span>10130 * 50 = n * 8.314 * 573
506500 = 4763.922 n
n = </span>506500 / 4763.922
n = 106.3199 moles
Answer:
The essence including its given problem is outlined in the following segment on the context..
Explanation:
The given values are:
Moles of CO₂,
x = 0.01962
Moles of water,



Compound's mass,
= 0.4647 g
Let the compound's formula will be:

Combustion's general equation will be:
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
⇒ 
Now,
x : y : z = 
= 
= 
= 
So that the empirical formula seems to be "C₃H₆O₂".