If the question meant that we should write a linear prediction function ;
Answer:
y = bx + c
Step-by-step explanation:
The equation for a linear regression prediction function is stated in the form :
y = bx + c
Where ;
y = Predicted or dependent variable
b = slope Coefficient
c = The intercept value
x = predictor or independent variable
Therefore, the Linear function Given represents a simple linear model for one dependent variable, x
b : is the slope value of the equation, whuch represents a change in y per unit change in x
This formula only applies if the track is circular. If it is, then we write the equation:
2*r*pi=400
Dividing by 2pi, we see that:
r=200/pi
This is approximately 63.66.
Answer:
33%
Step-by-step explanation:
h steps:
Step 1: We make the assumption that 51 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$.
Step 3: From step 1, it follows that $100\%=51$.
Step 4: In the same vein, $x\%=17$.
Step 5: This gives us a pair of simple equations:
$100\%=51(1)$.
$x\%=17(2)$.
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{51}{17}$
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{17}{51}$
$\Rightarrow x=33.33\%$
Therefore, $17$ is $33.33\%$ of $51$.