Answer:
150
Explanation:
- C₄H₂OH + 6O2 → 4CO2 + 5H₂O
We can <u>find the equivalent number of O₂ molecules for 100 molecules of CO₂</u> using a <em>conversion factor containing the stoichiometric coefficients of the balanced reaction</em>, as follows:
- 100 molecules CO₂ *
= 150 molecules O₂
150 molecules of O₂ would produce 100 molecules of CO₂.
Hey, lovely! It's a pretty lengthy process but here is a pretty clear video on how to do it. Hope this helps ya!
https://www.khanacademy.org/science/chemistry/chemical-reactions-stoichiome/balancing-chemical-equat...
Answer:
The total energy, i.e. sum of kinetic and potential energy, is constant.
i.e. E = KE + PE
Initially, PE = 0 and KE = 1/2 mv^2
At maximum height, velocity=0, thus, KE = 0 and PE = mgh
Since, total energy is constant (KE converts to PE when the ball is rising),
therefore, KE = PE
or, 1/2 mv^2 = mgh
or, h = v^2 /2g = 13^2 / (2x9.8) = 8.622 m
Hope this helps.