A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
The answer for this is 26.6°c
Answer:
D and R are in the same period
Explanation:
remember groups are vertical and periods are horizontal!
Answer:
0.72 g of the lower oxide gave 0.8 g of higher oxide when oxidised. ... Thus, 90g of lower oxide contains as much metal as 100g of higher oxide, i.e., 80g (given). Hence, 80g of metal combines with 10g of oxygen in the lower oxide and 20g of oxygen in the higher oxide.
Element on the right side of the periodic table differ from the elements on the left side in that elements on the <em>right side are non metallic and tends to be gases at room temperature.</em>
<em> </em><u>Explanation</u>
In the periodic table there element in the right side , left side and those which are in between.
- Example of element in the right side is fluorine chlorine, neon, Argon among others.
- This element have higher effective nuclear charges and stabilize electrons more effectively.
- there electrostatic intermolecular forces are generally weak therefore they exist in liquid or gaseous state.