Answer:
An object has potential energy (stored energy) when it is not in motion. Once a force has been applied or it begins to move the potential energy changes to kinetic energy (energy of motion).
Therefore, true. (Also would u mind giving brainliest, you don't have to hehe)
The answer would be "false" or the second option. A opinion is what you think on a certain subject and science is full of facts and opinions of other scientist which would mean your using someone else for your opinion just remember opinions is what you think about a subject and you can't use science for your opinion.
Hope this helps!
Answer:
itz elementary school in new Jersey city and I was in school for a little while I had a phone and a couple days later and I'm going next week and I'm gonna go back and watch Netflix and get some headphones and a lot more like a child and a couple more like this
Answer:
changes from a solid to a liquid
Explanation:
Answer: Dissociation constant of the acid is
.
Explanation: Assuming the acid to be monoprotic, the reaction follows:

pH of the solution = 6
and we know that
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
![[H^+]=antilog(-pH)](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dantilog%28-pH%29)
![[H^+]=antilog(-6)=10^{-6}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dantilog%28-6%29%3D10%5E%7B-6%7DM)
As HA ionizes into its ions in 1 : 1 ratio, hence
![[H^+]=[A^-]=10^{-6}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BA%5E-%5D%3D10%5E%7B-6%7DM)
As the reaction proceeds, the concentration of acid decreases as it ionizes into its ions, hence the decreases concentration of acid at equilibrium will be:
![[HA]=[HA]-[H^+]](https://tex.z-dn.net/?f=%5BHA%5D%3D%5BHA%5D-%5BH%5E%2B%5D)
![[HA]=0.1M-10^{-6}M](https://tex.z-dn.net/?f=%5BHA%5D%3D0.1M-10%5E%7B-6%7DM)
![[HA]=0.09999M](https://tex.z-dn.net/?f=%5BHA%5D%3D0.09999M)
Dissociation Constant of acid,
is given as:
![K_a=\frac{[A^-][H^+]}{HA}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7BHA%7D)
Putting values of
in the above equation, we get


Rounding it of to one significant figure, we get
