Answer:
I know it’s going to be -5 and -1.3 but I’m not sure about the zero I don’t know if you count zeros to but please let me know.
Answer:
a
b

c

Step-by-step explanation:
From the question we are told that
The population proportion is p = 0.53
The sample size is n = 10
Generally the distribution of the confidence of US adults in newspapers follows a binomial distribution
i.e
and the probability distribution function for binomial distribution is
Here C stands for combination hence we are going to be making use of the combination function in our calculators
Generally the probability that the number of U.S. adults who have very little confidence in newspapers is exactly five is mathematically represented as
=>
=>
Generally the probability that the number of U.S. adults who have very little confidence in newspapers is at least six is mathematically represented as

=> ![P( X \ge 6 )= [^{10}C_6 * [0.53]^6 * (1- 0.53)^{10-6}] + [^{10}C_7 * [0.53]^7 * (1- 0.53)^{10-7}] + [^{10}C_8 * [0.53]^8 * (1- 0.53)^{10-8}] + [^{10}C_9 * [0.53]^9 * (1- 0.53)^{10-9}] + [^{10}C_{10} * [0.53]^{10} * (1- 0.53)^{10-10}]](https://tex.z-dn.net/?f=P%28%20X%20%5Cge%20%206%20%29%3D%20%20%5B%5E%7B10%7DC_6%20%2A%20%20%5B0.53%5D%5E6%20%2A%20%20%281-%200.53%29%5E%7B10-6%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_7%20%2A%20%20%5B0.53%5D%5E7%20%2A%20%20%281-%200.53%29%5E%7B10-7%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_8%20%2A%20%20%5B0.53%5D%5E8%20%2A%20%20%281-%200.53%29%5E%7B10-8%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_9%20%2A%20%20%5B0.53%5D%5E9%20%2A%20%20%281-%200.53%29%5E%7B10-9%7D%5D%20%2B%20%5B%5E%7B10%7DC_%7B10%7D%20%2A%20%20%5B0.53%5D%5E%7B10%7D%20%2A%20%20%281-%200.53%29%5E%7B10-10%7D%5D)
=> ![P( X \ge 6 )= [0.227] + [0.1464] + [0.0619] + [0.0155] + [0.00082]](https://tex.z-dn.net/?f=P%28%20X%20%5Cge%20%206%20%29%3D%20%20%5B0.227%5D%20%2B%20%20%5B0.1464%5D%20%2B%20%20%5B0.0619%5D%20%2B%20%20%5B0.0155%5D%20%2B%20%5B0.00082%5D)
=> 
Generally the probability that the number of U.S. adults who have very little confidence in newspapers is less than four is mathematically represented as

=> ![P( X < 4 )= [^{10}C_3 * 0.53^3 * (1- 0.53)^{10-3}] + [^{10}C_2 * 0.53^2 * (1- 0.53)^{10-2}] + [^{10}C_1 * 0.53^1 * (1- 0.53)^{10-1}] + [^{10}C_0 * 0.53^0 * (1- 0.53)^{10-0}]](https://tex.z-dn.net/?f=P%28%20X%20%3C%20%204%20%29%3D%20%20%5B%5E%7B10%7DC_3%20%2A%20%200.53%5E3%20%2A%20%20%281-%200.53%29%5E%7B10-3%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_2%20%2A%20%200.53%5E2%20%2A%20%20%281-%200.53%29%5E%7B10-2%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_1%20%2A%20%200.53%5E1%20%2A%20%20%281-%200.53%29%5E%7B10-1%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_0%20%2A%20%200.53%5E0%20%2A%20%20%281-%200.53%29%5E%7B10-0%7D%5D%20)
=> 
=> 
$44. 22*2=44, and 44/2=22.
Answer:
Let's complete the square first.
y = x² + 6x + 3
= (x² + 6x + 9) - 6
= (x + 3)² - 6
Therefore, the vertex is (-3, -6) and since the coefficient of (x + 3)² is positive, the vertex is a minimum.
D = rt. The first car's rate is r, and the other one, going faster, is r + 12. The time they travel is 2 hours. Since one is going faster than the other, he has gotten farther. But, regardless of that, the distance between them is 232. So the distance the first one travels, r*t, which 2r, plus the distance the second one travels, 2(r+12) = 232. 2r + 2r + 24 = 232. Solve for r. 4r = 208 and r = 52. The slower one goes 52 and the faster one goes 64