Answer:
Explanation:
To solve this, we must know two things.
First, the force of gravity acting on an orbiting object is equal to its mass times centripetal acceleration.
Second, the force of gravity between two objects is defined by Newton's law of universal gravitation: Fg = mMG/r², where Fg is the force of gravity, m and M are the masses of the objects, G is the universal constant of gravitation, and r is the distance between the objects.
Therefore:
Fg = m v²/r
mMG/r² = m v²/r
v² = MG/r
The potential energy of each planet is:
PE = mgr = m (MG/r²) r = mMG/r
The kinetic energy of each planet is:
KE = 1/2 mv² = 1/2 m (MG/r) = 1/2 mMG/r
The total mechanical energy is:
ME = PE + KE = 3/2 mMG/r
Since both planets have the same mass, the only difference is the orbital radius. Since planet A has a smaller orbital radius, it has more potential energy, more kinetic energy, and more mechanical energy.
Answer: While quantum physics is usually concerned with the basic building blocks of light and matter, for some time scientists have now been trying to investigate the quantum properties of larger objects, thereby probing the boundary between the quantum world and everyday life. For this purpose, particles are slowed down with the help of electromagnetic waves and the motional energy is drastically reduced. Therefore, one also speaks of "motional cooling."
Quantum properties occur when particles are cooled to their fundamental quantum ground state, that is to the lowest possible energy level. While so far the only way to cool particles to the ground state has been to make them interact with photons trapped in an electromagnetic resonator, theoretical physicists led by Carlos Gonzalez-Ballestero and Oriol Romero-Isart from the Department of Theoretical Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences in collaboration with experimentalist Jan Gieseler from Harvard University and ICFO in Barcelona now propose to make the motion of magnetic particles interact with the internal acoustic waves that are confined inside every particle.
Explanation:
Sound waves in micro-magnets
In analogy to photons -- the quanta of light -- vibrations in a solid body can be described as so-called phonons. These small sound wave packets propagate through the crystal lattice of the solid. "The phonons are very isolated and interact with the movement of the particle motion only through magnetic waves," explains Carlos Gonzalez-Ballestero. "In our work we now show that this interaction can be controlled by a magnetic field." This allows to realize quantum experiments without photons, and therefore even with light-absorbing particles. "Conversely, we also show that the strong interaction between motion and phonons provides a path to probe and manipulate the elusive and exotic dynamics of acoustic and magnetic waves in very small particles," adds Oriol Romero-Isart. The new method also opens up new possibilities for quantum information processing, for example, by using phonons as a quantum memory.
Given that in a parallel circuit:
R1 = 12 ohms
R2= 15 ohms
I = 12 A
I2 = 4 A
V=?
R=?
R3 =?
P=?
Since,
V= IR
or,
V2 = I2 * R2
V2= 4* 15
V2 = 60V
Since in a parallel circuit voltage remain same in all component of the circuit and is equal to the source voltage.
Therefore,
V= V1 = V2 = V3 = 60V
Since,
V= IR
R= V/I
R= 60/12
R= 5 ohm
That is total resistance is equal to 5 ohms.
Since for parallel circuit,
1/R= 1/R1 + 1/R2 + 1/R3
1/5= 1/12+ 1/15 + 1/R3
or
1/R3= 1/5- 1/12- 1/15
1/R3= 1/20
or
R3= 20 ohms
Since,
V=IR
I= V/R
I1= V1/ R1
I1= 60/12
I1= 5 A
I3= V3/R3
I3= 60/20
I3= 3A
Since,
P=VI
P= 60*12
P= 720 watt
P1= V1* I1
P1= 60* 5
P1= 300 watt
P2= V2* I2
P2= 60* 4
P2= 240watt
P3= V3*I3
P3= 60*3
P3= 180 watt
Hence we have,
R1= 12 ohms , R2= 15 ohms, R3= 20 ohms, R= 5 ohms
I1= 5A, I2= 4A, I3= 3A, I= 12 A
V1= V2= V3= V= 60V
P1= 300 watt, P2= 240 watt, P3 = 180 watt, P= 720 watt
Answer:
clean that off bro
Explanation:
u dont wanna give people that corona
You just use a bit of algebra. Kinetic energy is KE = (1/2) (mass) (speed squared). Multiply each side by (2/mass) and you have 2KE/mass=speed-squared. The square root of both sides then gives you the speed in terms of the kinetic energy.