1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Effectus [21]
4 years ago
7

HELP GUYS IM REALLY NOT SURE,,

Mathematics
1 answer:
Solnce55 [7]4 years ago
5 0
What u not sure bout?
You might be interested in
I NEED HELPPP<br><br> Whats the length of LN?
andre [41]

Answer:

LN = 66 cm

Step-by-step explanation:

The 3 parallel lines divide the 2 sides they intersect in proportion, that is

\frac{DE}{EF} = \frac{LM}{MN} , substitute values

\frac{7}{15} = \frac{LM}{45} ( cross- multiply )

15LM = 315 ( divide both sides by 15 )

LM = 21

Hence

LN = LM + MN =  21 + 45 = 66 cm

3 0
3 years ago
Using the numbers 5, 8, and 24, create a problem using no more than 4 operations (adding, subtracting, multiplication, division,
nalin [4]
<span>√(5*8*24)      or anything along those lines, you can switch the numbers around , it wont matter</span>
3 0
3 years ago
You are making juice from concentrate. The directions on the packaging say to mix
mel-nik [20]

Answer:

25 can.                            

Step-by-step explanation:

Here is the complete question: You are making juice from concentrate. The directions on the packaging say to mix  1 can of juice with 3 cans of water to make orange juice. How many 12 fluid ounces cans of the concentrate are required to prepare 200 6-ounce servings of orange juice?

Given: Ratio to make juice with concentrate:water is 1:3.

As required we need to prepare 200 6 ounce serving of Orange juice.

∴ 200\times 6= 1200\ ounce

Let there be x ounce of concentrate and 3x ounce of water to make 1200 ounce of orange juice.

Now, x+3x= 1200

∴ x= 300 ounce

Next, lets find out how many cans of 12 ounce is required.

\frac{300}{12} = 25\ cans

∴ 25 cans is required to make 1200 ounce of orange juice.

3 0
3 years ago
If h(x) is the inverse of f(x). what is the value of h(f(x))?
attashe74 [19]

Option C is correct

The value of h(f(x)) is, x

Inverse function:

An inverse function that undergoes the other function.

For example: if f(x) is the inverse of g(x) then;

for every x.

As per the statement:

If h(x) is the inverse of f(x).

by definition of inverse:

Therefore,  the value of h(f(x)) is, x

6 0
4 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • Simplify <br> sin x/sec x+1
    8·1 answer
  • Someone help me asap math 10
    7·1 answer
  • Which right prism would have the same volume as a square prism with a base area of 36 m2 and a height of 3 m?
    7·1 answer
  • What is the result when x^3-5x^2-18 is divided by x+3?
    7·1 answer
  • ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
    8·1 answer
  • Write each fraction as a percent 4/100
    11·2 answers
  • I need help please!
    6·2 answers
  • 75 divided by negative 1/5
    10·2 answers
  • Consider the following system of equations.
    15·2 answers
  • Mark and Don are planning to sell each of their marble collections at a garage sale. If Don has 5 more than 3 times the number o
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!