Answer: 5 seconds
Explanation:
Given the following :
Inductance (L) = 40 henry
Resistance = 8 ohms
The circuit given above is a Resistor - Inductor (RL) circuit network. The time constant of an RL circuit is the ratio of the circuit Inductance (L) and Resistance (R). Time constant is measured in seconds.
THAT IS;
Time constant = L / R
THEREFORE ;
Time constant = 40 / 8
Time constant = 5 seconds
To solve this problem it is necessary to apply the fluid mechanics equations related to continuity, for which the proportion of the input flow is equal to the output flow, in other words:

We know that the flow rate is equivalent to the velocity of the fluid in its area, that is,

Where
V = Velocity
A = Cross-sectional Area
Our values are given as



Since there is continuity we have now that,






Therefore the speed of the water's house supply line is 0.347m/s
If the net force is zero, then there is no acceleration, which means no change in velocity. The velocity starts at zero, so it must remain at zero. Therefore, the object will not move.
Answer:
0.15 mV
Explanation:
In order to exhibit wave nature, the de Broglie wavelength of the electron must be of the same size of the diameter of the pinhole, therefore:

The de Broglie wavelength of an electron is

where
is the Planck constant
is the mass of the electron
v is the electron's speed
Therefore, the electron's speed must be

When accelerated through a potential difference
, the kinetic energy gained by the electron is equal to the change in electric potential energy, therefore

where
is the magnitude of the charge of the electron
So, we can find the potential difference needed:
