Answer:
The frog takes 8 jumps to reach top of well
Explanation:
Given data
Frog at bottom=17 foot
Each time frog leaps 3 feet
Frog has not reached the top of the well, then the frog slides back 1 foot
To Find
Total number of leaps the frog needed to escape from well
Solution
in 1 jump distance jumped=3+(-1)
=2 feet
=2×1 feet
The "-1" is because the frog goes back
Now After 2 jumps the distance jumped as:
Distance Jumped=2+2
Distance Jumped=2*2
=4 feet
Similarly after 7 jumps
Distance Jumped=2+2+......+2
Distance Jumped=2*7
=14 feet
Now after 8th jump the frog climbs but doesnot slide back as it is reached to the top of well.
So
Distance Jumped=(Distance Jumped after 7 jumps)+3
=14+3
=17 feet
The frog takes 8 jumps to reach top of well
Answer:
The <em><u>n = 2 → n = 3</u></em> transition results in the absorption of the highest-energy photon.
Explanation:

Formula used for the radius of the
orbit will be,
where,
= energy of
orbit
n = number of orbit
Z = atomic number
Here: Z = 1 (hydrogen atom)
Energy of the first orbit in H atom .

Energy of the second orbit in H atom .

Energy of the third orbit in H atom .

Energy of the fifth orbit in H atom .

Energy of the sixth orbit in H atom .

Energy of the seventh orbit in H atom .

During an absorption of energy electron jumps from lower state to higher state.So, absorption will take place in :
1) n = 2 → n = 3
2) n= 5 → n = 6
Energy absorbed when: n = 2 → n = 3


Energy absorbed when: n = 5 → n = 6


1.89 eV > 0.166 eV
E> E'
So,the n = 2 → n = 3 transition results in the absorption of the highest-energy photon.
The correct selections are C, C, B, D, A, B, and A .
1) The object slows down due to kinetic friction.
2) The coefficient of kinetic friction is higher on a carpet than on the bare floor, therefore the object would slow down quicker on the carpet
Answer:
a. 2.4 ×109 N ⋅ m2/s
b. 48.3 N⋅s /m2
c. 8.00×104W
Explanation:
See Attached file for explanation