Answer:
because he give heat and energy
Answer:
The rate of the boat in still water is 44 mph and the rate of the current is 4 mph
Explanation:
x = the rate of the boat in still water
y = the rate of the current.
Distance travelled = 120 mi
Time taken upstream = 3 hr
Time taken downstream = 2.5 hr
Speed = Distance / Time
Speed upstream
Speed downstream
Adding both the equations
The rate of the boat in still water is <u>44 mph</u> and the rate of the current is <u>4 mph</u>
r₁ = distance of the point from the source = 43 km = 43000 m
I₁ = intensity of earthquake wave at distance "r₁" = 2.5 x 10⁶ W/m²
r₂ = distance of the point from the source = 1.5 km = 1500 m
I₂ = intensity of earthquake wave at distance "r₂" = ?
we know that , for a constant power , the intensity of wave is inversely proportional to the distance from the source .
I α 1/r² where I = intensity of wave , r = distance from source
hence we can write
I₁/I₂ = r₂²/r₁²
inserting the values
(2.5 x 10⁶) /I₂ = (1500/43000)²
I₂ = 2.1 x 10⁹ W/m²
Let's just assume that you throw the ball with an initial speed of 2 m/s instead of dropping it like free falling.
a=9.81 m/s^2
Vi= 2 m/s
t= 3 x
we use the formula
d = (Vi)(t) + (1/2)(a)(t)^2
d= (2)(3) + (1/2)(9.81)(9)
d=50.145 m