I'll try it.
I just went through this twice on scratch paper. The first time was to
see if I could do it, and the second time was because the first result
I got was ridiculous. But I think I got it.
You said <span><u>3sin²(x) = cos²(x)</u>
Use this trig identity: sin²(x) = 1 - cos²(x)
Plug it into the original equation for (x).
3(1 - cos²(x) ) = cos²(x)
Remove parentheses on the left: 3 - 3cos²(x) = cos²(x)
Add 3cos²(x) to each side: 3 = 4cos²(x)
Divide each side by 4 : 3/4 = cos²(x)
Take the square root of each side: <em>cos(x) = (√3) / 2</em> .
There it is ... the cosine of the unknown angle.
Now you just go look it up in a book with a table cosines,
or else pinch it through your computer or your calculator,
or else just remember that you've learned that
cos( <em><u>30°</u></em> ) = </span><span><span>(√3) / 2 </span>.
</span>
Answer:
b
Step-by-step explanation:
3/3 = 1
Answer:
B
Step-by-step explanation:
Answer:
categorical or quantitative data
Step-by-step explanation:
Answer:
m(arc ZWY) = 305°
Step-by-step explanation:
8). Formula for the angle formed outside the circle by the intersection of two tangents or two secants is,
Angle formed by two tangents = 
= 
= 
= 40°
9). Following the same rule as above,
Angle formed between two tangents = 
125 = ![\frac{1}{2}[m(\text{major arc})-m(\text{minor arc})]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Bm%28%5Ctext%7Bmajor%20arc%7D%29-m%28%5Ctext%7Bminor%20arc%7D%29%5D)
250 = ![[m(\text{arc ZWY})-m(\text{arc ZY})]](https://tex.z-dn.net/?f=%5Bm%28%5Ctext%7Barc%20ZWY%7D%29-m%28%5Ctext%7Barc%20ZY%7D%29%5D)
250 = m(arc ZWY) - 55
m(arc ZWY) = 305°
Therefore, measure of arc ZWY = 305° will be the answer.
10). m(arc BAC) = ![\frac{1}{2}([m(\text{arc BDC})-m(\text{arc BC})])](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%28%5Bm%28%5Ctext%7Barc%20BDC%7D%29-m%28%5Ctext%7Barc%20BC%7D%29%5D%29)
= 
= 
= 74°