an acid is an ionic compound that produces positive hydrogen ions when dissolved in water and a bacis is an ionic compound that produces negative hydroxide ions when dissolved in water
Answer:
The reaction isn't yet at equilibrium. The overall reaction will continue to move in the direction of the products.
Assumption: this system is currently at
.
Explanation:
One way to tell whether a system is at its equilibrium is to compare its reaction quotient
with the equilibrium constant
of the reaction.
The equation for
is quite similar to that for
. The difference between the two is that
requires equilibrium concentrations, while
can be calculated even when the system is on its way to equilibrium.
For this reaction,
.
Given these concentrations,
.
The question states that at
,
. Assume that currently this system is also at
. (The two temperatures need to be the same since the value of
depends on the temperature.)
It turns out that
. What does this mean?
- First, the system isn't at equilibrium.
- Second, if there's no external changes, the system will continue to move towards the equilibrium. Temperature might change. However, eventually
will be equal to
, and the system will achieve equilibrium.
In which direction will the system move? At this moment,
. As time proceeds, the value of
will increase so that it could become equal to
. Recall that
is fraction.
When the value of
increases, either its numerator becomes larger or its denominator becomes smaller, or both will happen at the same time. However,
- Concentrations on the numerator of
are those of the products; - Concentrations on the denominator of
are those of the reactants.
As time proceeds,
- the concentration of the products will increase, while
- the concentration of the reactants will decrease.
In other words, the equilibrium will move towards the products.
My Heroes is the time of my time I am in college now that I will do it again tomorrow night and you can do something to me about it and then I will never go back again I hope that I can do this again I don’t want
Answer:

Explanation:
Data:
I = 2.15 A
t = 8 min 24 s
T = 26.0 °C
V = 65.4 mL
p = 774.2 To
1. Write the equation for the half-reaction
2H₂O ⟶ O₂ + 4H⁺ + 4e⁻
2. Calculate the moles of oxygen
V = 0.0654 L
T = (26.0 + 273.15) K = 299.15 K

3. Calculate the moles of electrons

4. Calculate the number of coulombs
t = 8 min 24 s =504 s
Q = It = 504 s × 2.10 C·s⁻¹= 1058 C
5. Calculate the number of electrons

6. Calculate Avogadro's number

<u>Answer:</u> This violates the law of constant composition.
<u>Explanation:</u>
Dalton's theory is based on mainly two laws, which are law of conservation of mass and law of constant composition.
Law of constant composition states that a compound always contain the elements in the fixed ratio by their masses.
For Example: In water
, the hydrogen and oxygen are present in the fixed ratio of 1 : 9 by their mass.
We are given:
A sample of titanium dioxide having 59.95 % of titanium and another sample of titanium dioxide having 60.10 % of titanium.
As, the compound is titanium dioxide. So, the mass percent of titanium must remain the same in both the elements.
Hence, this violates the law of constant composition.