Answer:

Explanation:
Henry's law states that the solubility of a gas is directly proportional to its partial pressure. The equation may be written as:

Where
is Henry's law constant.
Our strategy will be to identify the Henry's law constant for oxygen given the initial conditions and then use it to find the solubility at different conditions.
Given initially:

Also, at sea level, we have an atmospheric pressure of:

Given mole fraction:

According to Dalton's law of partial pressures, the partial pressure of oxygen is equal to the product of its mole fraction and the total pressure:

Then the equation becomes:

Solve for
:

Now we're given that at an altitude of 12,000 ft, the atmospheric pressure is now:

Apply Henry's law using the constant we found:

Answer:
A
Explanation:
bcuz the water in it is little
This is not a phospholipid as it does not contain a phosphate group at the end of the chain, and is not a triglyceride as there is no glyceryl moiety. Each carbon bonded to hydrogens makes the maximum number of C-H bonds possible, therefore there are no multiple bonds between carbons and the lipid is saturated. Therefore the answer is A.
Hope this helps!
If egg is dipped in cylinder then the volume of egg will be difference in the volumes before dipping egg (initial volume) and volume after dipping egg (final volume)
Volume of egg= 58.5-50.0 = 8.5 mL