Answer:
1) magnesium chloride
2) b) The copper is getting oxidized from Cu+ to Cu2+ and turns blue.
Explanation:
The work published by David N. Frick, Sukalyani Banik, and Ryan S. Rypma in J Mol Biol. 2007 Jan 26; 365(4): 1017–1032 clearly shows that divalent metal ions of group 2 such as Mg^2+ play an important role in ATP hydrolysis. Addition of EDTA decreased the rate of hydrolysis of ATP (due to sequestration of the divalent ion of group 2) indicating an active participation of divalent ions in the process.
2) The copper I ion is colourless because it is a d^10 specie. However, when it is oxidized to Cu^2+, a blue colour appears in the solution.
Rate law for the given 2nd order reaction is:
Rate = k[a]2
Given data:
rate constant k = 0.150 m-1s-1
initial concentration, [a] = 0.250 M
reaction time, t = 5.00 min = 5.00 min * 60 s/s = 300 s
To determine:
Concentration at time t = 300 s i.e. ![[a]_{t}](https://tex.z-dn.net/?f=%5Ba%5D_%7Bt%7D)
Calculations:
The second order rate equation is:
![1/[a]_{t} = kt +1/[a]](https://tex.z-dn.net/?f=1%2F%5Ba%5D_%7Bt%7D%20%3D%20kt%20%2B1%2F%5Ba%5D)
substituting for k,t and [a] we get:
1/[a]t = 0.150 M-1s-1 * 300 s + 1/[0.250]M
1/[a]t = 49 M-1
[a]t = 1/49 M-1 = 0.0204 M
Hence the concentration of 'a' after t = 5min is 0.020 M
Answer:
44.8 L of O2 will react (option D)
Explanation:
Step 1: Data given
Number of moles of SO2 = 4.00 moles
STP = Pressure = 1 atm and temperature = 273 K
Step 2: The balanced equation
2 SO2(g) + O2(g) → 2 SO3(g)
Step 3: Calculate moles of O2
For 2 moles SO2, we need 1 mol O2 to produce 2 moles SO3
For 4.00 moles SO2 we need 4.00 / 2 = 2.00 moles O2
Step 4: Calculate volume of O2
For 1 mol we have a volume of 22.4 L
V = (n*R*T)/ p
V = (2.00 * 0.08206 * 273)/p
V = 44.8 L
For 2.00 moles we have a volume of 2*22.4 = 44.8 L
44.8 L of O2 will react (option D)
Would the answer be d wouldn't it