The force on the layer will be equivalent to the weight of water on it. This is given by:
F = mg; m is the mass of water and g is the acceleration due to gravity.
A quantity that has magnitude and direction
Answer: 477W
Explanation:
Given the following :
Mass (m) = 7.3kg
Initial Velocity (u) = 0
Final velocity (v) = 14m/s
time (t) = 1.5s
Power = workdone (W) / time (t)
The workdone can be calculated as the change in kinetic energy (KE) :
Recall ;
KE = 0.5mv^2
Therefore, change in KE is given by:
0.5mv^2 - 0.5mu^2
Change in KE = 0.5(7.3)(14^2) - 0.5(7.3)(0^2)
Change in KE = 715.4J
Therefore ;
Average power = Workdone / time
Workdone = change in KE = 715.4N
Average power = 715.4 / 1.5
Average power = 476.93333 W
= 477W
Answer:
It would take
time for the capacitor to discharge from
to
.
It would take
time for the capacitor to discharge from
to
.
Note that
, and that
.
Explanation:
In an RC circuit, a capacitor is connected directly to a resistor. Let the time constant of this circuit is
, and the initial charge of the capacitor be
. Then at time
, the charge stored in the capacitor would be:
.
<h3>a)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
<h3>b)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.