<h3>
Answer: x(x+1)(5x+9) </h3>
===================================================
Work Shown:
5x^3 + 14x^2 + 9x
x( 5x^2 + 14x + 9 )
To factor 5x^2 + 14x + 9, we could use the AC method and guess and check our way to getting the correct result.
A better way in my opinion is to solve 5x^2 + 14x + 9 = 0 through the quadratic formula

Then use those two solutions to find the factorization
x = -1 or x = -9/5
x+1 = 0 or 5x = -9
x+1 = 0 or 5x+9 = 0
(x+1)(5x+9) = 0
So we have shown that 5x^2 + 14x + 9 factors to (x+1)(5x+9)
-----------
Overall,
5x^3 + 14x^2 + 9x
factors to
x(x+1)(5x+9)
Answer:
0.7
Step-by-step explanation:
10y = 7x + 5
Divide both sides by 10.
y = 7x/10 + 5/10
y = 0.7x + 0.5
On a straight line of the form y = kx + m, k is the slope of the line.
In our line, y = 0.7x + 0.5, k is 0.7. Thus, the slope of our function is 0.7
Answer: 0.7
Answer:
w = 10
Step-by-step explanation:

Answer:
Step-by-step explanation:
Hello!
You have the information for two variables
X₁: Number of consumer purchases in France that were made with cash, in a sample of 120.
n₁= 120 consumer purchases
x₁= 48 cash purchases
p'₁= 48/120= 0.4
X₂: Number of consumer purchases in the US that were made with cash, in a sample of 55.
n₂= 55 consumer purchases
x₂= 24 cash purchases
p'₂= 24/55= 0.4364
You need to construct a 90% CI for the difference of proportions p₁-p₂
Using the central limit theorem you can approximate the distribution of both sample proportions p'₁ and p'₂ to normal, so the statistic to use to estimate the difference of proportions is an approximate standard normal:
[(p'₁-p'₂) ±
*
]

[(0.4-0.4364)±1.648 *
]
[-0.1689;0.0961]
The interval has a negative bond, it is ok, keep in mind that even tough proportions take values between 0 and 1, in this case, the confidence interval estimates the difference between the two proportions. It is valid for one of the bonds or the two bonds of the CI for the difference between population proportions to be negative.
I hope this helps!
Answer:
let the past stay in the past
Step-by-step explanation: