Answer: The proof is mentioned below.
Step-by-step explanation:
Here, Δ ABC is isosceles triangle.
Therefore, AB = BC
Prove: Δ ABO ≅ Δ ACO
In Δ ABO and Δ ACO,
∠ BAO ≅ ∠ CAO ( AO bisects ∠ BAC )
∠ AOB ≅ ∠ AOC ( AO is perpendicular to BC )
BO ≅ OC ( O is the mid point of BC)
Thus, By ASA postulate of congruence,
Δ ABO ≅ Δ ACO
Therefore, By CPCTC,
∠B ≅ ∠ C
Where ∠ B and ∠ C are the base angles of Δ ABC.
Using the binomial distribution, it is found that the probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
For each person, there are only two possible outcomes, either they need correction for their eyesight, or they do not. The probability of a person needing correction is independent of any other person, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- A survey showed that 77% of us need correction, hence p = 0.77.
- 13 adults are randomly selected, hence n = 13.
The probability that at least 12 of them need correction for their eyesight is given by:

In which:



Then:

The probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
More can be learned about the binomial distribution at brainly.com/question/24863377
Answer:
<em>Jane traveled 8 miles farther then her trainer</em>
Step-by-step explanation:
<u>The Pythagora's Theorem</u>
In any right triangle, the square of the measure of the hypotenuse is the sum of the squares of the legs. This can be expressed with the formula:

Where
c = Hypotenuse or largest side
a,b = Legs or shorter sides
Jane's path from the Health Club to the end of her route describes two sides of a right triangle of lengths a=16 miles and b=12 miles.
Her total distance traveled is 16 + 12 = 28 miles
Her trainer goes directly from the Health Club to meet her through the hypotenuse of the triangle formed in the path.
We can calculate the length of his route as:


c = 20 miles
The difference between their traveled lengths is 28 - 20 = 8 miles
Jane traveled 8 miles farther then her trainer
Answer:
Yes, the triangles are simirar with a scale factor of 3/2.
Step-by-step explanation:
We find the scale factor by dividing corresponding sides:
12/8=3/2
18/12=3/2
24/16=3/2