Answer:
Domain: All the real numbers
Range: All the real numbers
Step-by-step explanation:
The domain of a function is the complete set of possible values of the independent variable 'x'. That is to say, all the values that 'x' can take:
In this case, f(x)= 2x+1, the independent variable has no restrictions. Meaning that 'x' can take all the Real Values. In set notation: x∈ℝ.
The range of a function is the complete set of all possible resulting values of the dependent variable 'y'. In this case, given that the independent variable has no restrictions, the dependent variable 'y' can take any value. So, the range is: y ∈ ( −∞, ∞ ) - All the real numbers.
 
        
             
        
        
        
Step-by-step explanation:
You have 1 missed call(s) from +918897
 
        
             
        
        
        
Answer:
B. the graph decreases remains contant then decreases again i beleive 
Step-by-step explanation:
 
        
                    
             
        
        
        
<h3>Answers:</h3><h3>a. Vertices of triangle ABC are: A, B, C</h3><h3>b. Sides of triangle ABC are: AB, BC, AC</h3><h3>c. The side between angle A and angle C is: side AC</h3><h3>d. The angle between sides AB and CA is: angle A</h3><h3>e. Scalene triangle</h3>
=============================================
Explanations:
- a. Each uppercase letter represents a point or angle of the triangle.
- b. Connect two points of a triangle and you get a line segment. The order of the letters does not matter. So AB is the same as BA.
- c. Like with part b, connecting two angles or points forms a segment.
- d. Note how the letter "A" is in both AB and CA, so this is the shared angle between the two segments.
- e. Sides AB, BC, and AC are all different lengths, so we have a scalene triangle. If you had two sides equal to each other, then you'd have an isosceles triangle. If all three sides are equal, then it would be equilateral. 
There is no need for a diagram, but if you want, you can draw one out. See the attached image below for the diagram. This diagram should hopefully answer any questions you may have about the explanations above. There are many ways to draw the triangle, so your diagram might look different from mine.