Unscrambling
1. resting heart rate
2. overload
3. workout
4. specificity
5. cool-down
6. progression
7. warm-up
8. the last one can only be instance, but there was a typo on the paper.
Answer:

Explanation:
A simple pendulum is a system consisting of a mass attached to a string, and oscillating in a periodic motion, back and forth, along an equilibrium position.
The period of a pendulum is the time it takes for the pendulum to complete one oscillation.
The period of a pendulum is given by the equation

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that the period of a pendulum does not depend on the mass.
Therefore, the only 2 factors affecting the period of a pendulum are:
- The length of the pendulum: the longer it is, the longer the period of oscillation
- The acceleration due to gravity: the greater it is, the shorter the period of the pendulum
There is no scientific way to prove that it happened it’s like a hypothesis without being able to test the hypothesis
We know that According to Ohm's Law :
Current passing through a Conductor is directly proportional to the Voltage over a given Resistance.
⇒ V ∝ I
⇒ V = I × R
If Resistance is not changed and Voltage is increased, Based on Ohm's law we can conclude that Current flowing will also increase, because Voltage is directly proportional to Current.
The left ventricle relaxes and fills up with blood before squeezing and pumping the oxygen-rich blood through the aortic valve into the aorta — the main artery that carries blood to your body.<u>TRUE</u>