a tree truck
is the answer i hope this helps you xD
Answer:
1) F = 24 N
2) Distance = 1 m
Explanation:
We are given;
Mass; m = 120 g = 0.12 kg
Initial velocity; u = 20 m/s
Final velocity; v = 0 m/s since it came to rest.
Time; t = 0.1 s
We can calculate acceleration from Newton's first equation of motion;
a = (v - u)/t
a = (0 - 20)/0.1
a = -200 m/s²
1) magnitude of the resistance will be;
F = ma
F = 0.12 × (-200)
F = -24 N
Since, we are dealing with the magnitude, we will take the absolute value. Thus, F = 24 N
2) To find the distance moved by the bullet, we know that;
Distance = Average speed × time
Thus;
Distance = ((v + u)/2) × t
Distance = ((0 + 20)/2) × 0.1
Distance = 1 m
Answer: if the mass is doubled, the force of gravity is doubled, meaning it decreases. If the distance is doubled, the force of gravity is 1/4 as strong as before
Explanation:
Answer:
Wheres. The. Pics. Of. The. Structures
Explanation:
Answer:
Max speed = 
Max acceleration = 
Explanation:
Given the description of period and amplitude, the SHM could be described by:

and its angular velocity can be calculated doing the derivative:

And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):
and is given in m/s.
Then the maximum speed is obtained when the cosine function becomes "1", and that gives:
Max speed = 
The acceleration is found from the derivative of the velocity expression, and therefore given by:

and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:
Max acceleration = 